16.6.16

quatro pontos, um em cada lado de qual quadrado?


Hoje vamos tratar de um outro tipo de problema de construção de quadrados, que nos tem aparecido repetidamente, a saber:
a construção de um quadrado do qual cada uma das retas dos seus lados passa por um só de quatro pontos $\;A, \;B, \;C, \;D\;$ dados..
Para resolver este problema, é necessário olhar para as propriedades do quadrado. Tomem-se
  • quatro retas
    • $\;p, \;q, \;r,\; s, \;$ sendo
      • $\;p \perp q, \;q\perp r, \;r\perp s, \;s\perp p,\;$
      • $p \parallel r, \; q \parallel s\;$
      • e igualmente distanciadas $\;p\;$ de $\;r\;$ e $\,q\;$ de $\;s\;$
    • e os quatro pontos
      • $P,\; Q,\;R, \;S, \,$
        • respetivamente $\;p.q, \;q.r, \; r.s,\;s.t,\;$
        • sendo, obviamente iguais os segmentos $\;PQ, \;QR, \;RS, \; SP.\;$ das retas $\;p, \;q, \;r,\; s, \;$ respetivamente.
    Sabemos que
    • se uma reta corta duas retas fazendo ângulos alternos internos iguais, cf (I.27), então estas retas são paralelas;
    • qualquer segmento com extremidades em duas retas paralelas, cf (I.29), fazem com elas ângulos alternos internos iguais;
    • segmentos de reta unindo extremidades de segmentos iguais e paralelos, cf (I.33), são iguais e paralelos;
    • E, em consequência, se cortarmos dois pares de retas paralelas igualmente distanciadas, por dois segmentos a fazer ângulos alternos internos iguais (cada um a cada um), esses segmentos são iguais.
    No caso do nosso problema não nos são dados mais que um ponto $\;A\;$ em $\;p, \;$ $\;B\;$ em $\;q, \;$ $\;C\;$ em $\;r\;$ e $\;D\;$ em $\;s.\;$
    Se tomarmos $\;AC\;$ a ligar pontos das paralelas $\;p\;$ e $\;r\;$ e o ponto $\;B\;$ de $\;q,\;$ qual deve ser a relação de um reta tirada por $\;B\;$ com $\;q, \;s,\; AC\;$ para intersectar $\;s\;$ de modo a ter os mesmos ângulos alternos internos ao cortar $\;q, \; s\;$ em ângulos iguais aos feitos por $\;AC\;$ ao cortar $\;p, \;r$?
    Bastará tirar por $\;B\;$ a perpendicular a $\;AC\;$ porque, designando por $\;I\;$ a intersecção das perpendiculares, $\; A\hat{P}B= B\hat{I}A = 1 reto, \;$ e, em consequência, $\;P\hat{B}I + A\hat{I}B = 2 retos,\;$ bem como $\;Q\hat{A}I + A\hat{I}B = 2 retos,\;$ ou seja, $\;Q\hat{A}I = P\hat{B}I.\;$
    De modo inteiramente análogo, se provaria que cada um dos ângulos feitos entre $\;AC, \;r\;$ era igual a um dos ângulos feitos pela perpendicular a $\;AC\;$ tirada por $\;B\,$ com $\;s\;$.

    Se $\;BD\;$ não for perpendicular a $\;AC,\;$, na perpendicular a $\;AC\;$ tirada por $\;B\;$ encontramos um segundo ponto $\;E\;$ de $\;s\;$ de que nos tinha sido dado $\;D.\;$ Este ponto $\;E\;$ é tal que $\;BE\perp AC\;$ e $\;BE =AC, \;$ por estes serem segmentos com extremidades em pares de retas igualmente distanciadas e paralelas, por fazerem com elas iguais ângulos alternos internos: $\;s=DE\;$
    Isto chega para resolver o nosso problema de construção.

    $\fbox{n=0}\;\;\;$ Não conhecemos mais que os pontos $\;A, \;B, \;C, \;D\;$ dados.


    © geometrias.16 junho 2016, Criado com GeoGebra


    Peguemos na régua e no compasso.
    $\fbox{n=1}$ Tira-se por $\;B\;$ a perpendicular a $\;AC \;$ que, intersectada pela circunferência de centro $\;B\;$ e raio $\;AC\;$ determina um ponto $\;E\;$ da reta $\;s\;$ que contém o lado oposto ao lado $\;q\;$ que passa por $\;B.\;\;\;\; DE=s$
    $\fbox{n=2}$ Determinada a reta $\;s\;$ pode tirar por $\;A\;$ a perpendicular $\;p\;$ a ela e tomar a intersecção $\;p.s : \;\;\;S, \;$ vértice do quadrado.
    Do mesmo modo, a perpendicular a $\;s\;$ tirada por $\;C\;$ que designamos por $\;r\;$, sendo o vértice $\;R\;$ determinado por $\;r.s\;$
    $\fbox{n=3}$ Finalmente a perpendicular a $\;p\;$ (ou a $\;r\;$) tirada por $\;B\;$ que designamos por $\;q\;$ e que é a reta que faltava para a determinação por $\;p.q\;$ de $\;P\;$ e por $\;q.r\;$ de $\;Q.$
    $\fbox{n=4}$ Apresenta-se o quadrado $\;PQRS\;$ em que $\;A\in p, \; B\in q, \; C \in r, \; D \in s\;$

    Este problema tem muitas soluções, claro.

    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martin. Geometric Constructions Springer. New York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

13.6.16

Quadratura de um par de hexágonos regulares




Temos vindo a apresentar construções de régua e compasso para determinar um quadrado de área igual à área de uma dada figura. Em todas elas, há uma preocupação de economia no que ao número de passos respeita. O número de passos de uma construção refere-se ao número de vezes que se recorre à régua ou ao compasso. A identificação de pontos como intersecção de retas com retas, de retas com circunferências, e de circunferências com circunferências não contam como passos da construção. Um dos problemas que nos é apresentado em [3] pede
a construção de um quadrado de área igual à soma das áreas de dois dados hexágonos regulares, com o menor número de passos.
O problema é interessante porque nos pede que estudemos o hexágono e a forma de pensar em determinar uma figura de área igual à soma das áreas de dois hexágonos antes de pensarmos na quadratura propriamente para evitarmos alguns passos da construção. Há vários outros caminhos que podem ser seguidos para resolver o problema. Sabemos determinar os dois quadrados cada um equivalente a um dos hexágonos e obtidos estes, sabemos obter o quadrado somma das áreas, recorrendo ao teorema de Pitágoras e ete seria o caminho óbvio a seguir.
$\fbox{n=0}\;\;\;$ A figura dinâmica abaixo apresenta-nos um hexágono regular $\;ABCDEF\;$ inscrito numa circunferência de centro $\;O\,$ que sabemos ter raio igual ao lado do hexágono regular que aqui designamos por $\;a= AB=BC=CD=DE=EF=FA.\;$
Podem ver-se ainda os diâmetros $\;AD, \;BE, \;CF\;$ que dividem o hexágono em três paralelogramos equiláteros iguais $\;OABC,\;OCDE, \;OEFA, \;$ ou em seis triângulos equiláteros iguais $\;OAB, $ $\;OBC, \;OCD, \;ODE, \;OEF, \;OFA\;$ e de lados iguais ao lado do hexágono ou ao raio da circunferência em que o hexágono se inscreve.

© geometrias.13 junho 2016, Criado com GeoGebra


$\fbox{n=1}$ Tomámos o segmento $\;BB_0\;$ sendo $\;B_0\;$ o ponto médio de $\;OA. \;$ O retângulo de dimensões $\;BB_0 \times OB_0\;$ tem área igual ao triângulo $\;OAB.\;$
Sabemos que $\;OB_0 = \displaystyle \frac{a}{ 2}\;$ e que o quadrado de lado $\;OB=a\;$ é igual à soma dos quadrados de lados $\;OB_0 = \displaystyle \frac{a}{ 2}\;$ e $\;BB_0:\;$ $\;OB^2 =OB_0^2+BB_0^2. \;$
E, por isso podemos dizer que o quadrado de lado $\;BB_0\;$ tem área igual à da figura que se obtém retirando ao quadrado de lado $\;OB = a\;$ o quadrado de lado $\;OB_0:\; \; \; BB_0^2 = a^2 - (\displaystyle \frac{a}{2})^2 = \displaystyle \frac{3}{4} \times a^2, \;$ ou seja, o quadrado de lado $\;BB_0\;$ é, em área, três quartas partes do quadrado de lado $\,a.\;$
A área do retângulo (de diagonal $\;OB\;$) é $\;BB_0 \times OB_0 = k.a \times \frac{a}{2} = \frac{k}{2} a^2, \;$ em que $\;k\;$ é tal que $k^2=\frac{3}{4}.\;$
A área deste retângulo, igual à área do triângulo $\;OAB,\;$ é dada pela parte $\;\displaystyle \frac{k}{2} \;$ do quadrado de lado $\;a\;$ e, em consequência, a área do hexágono regular de lado $\;a\;$ é $\;3k\times a^2.\;$
$\fbox{n=2}$ Como sabemos todos os hexágonos regulares são semelhantes e podemos representar as diferentes classes de hexágonos regulares iguais entre si, por algum hexágono inscrito numa circunferência centrada em $ \;O\;$ que é o centro de um primeiro hexágono regular de lado $\,a\;$ e área $3k\times a^2. \;$ Para representar a classe de hexágonos regulares com um dado lado $\;b\;$ escolhemos o hexágono regular $\;GHIJKL\;$ também centrado em $\;O\;$ e do qual sabemos a área que é $\; 3k.b^2\;$
E também sabemos que se houver um hexágono regular cuja área seja igual à soma das áreas dos hexágonos de lados $\;a\;$ e $\;b :\;\;\; 3k. a^2 + 3k.b^2 \;$ terá de ter um lado $\;c:\;´\;\; 3k.c^2 = 3k.a^2+ 3k.b^2$, ou seja tal que $\; c^2 =a^2 + b^2.\;$
$\fbox{n=3}$ Pelo que vimos, o lado do hexágono regular de lado $\;c\;$ é tal que $\;c^2= a^2+b^2\;$ ou seja é a hipotenusa deum triângulo retângulo de catetos $\;a, \;b.\;$ que desenhámos tirando por $\;G\,$ uma perpendicular a $\;OG\;$ e tomando sobre essa perpendicular $\;M\,$ tal que $\;GM =a.\;$
$\fbox{n=4}$ Qualquer dos hexágonos regulares inscritos na circunferência de centro $\;O\;$ e raio $\;OM\;$ tem área igual à soma das áreas dos hexágonos $\;ABCDEF\;$ e $\;GHIJKL,\;$ já que $\;c^2 = a^2+b^2 \Leftrightarrow 3k.c^2 = 3k.a^2 + 3k. b^2.\;$ O hexágono $\;PQRSTU\;$ está nessas condições.
$\fbox{n=5}$ Isolemos o hexágono regular $\;GHIJKL.\;$ O nosso problema de quadratura de um par de hexágonos regulares dados fica reduzido à quadratura deste hexágono $\;GHIJKL.\;$
$\fbox{n=6}$ Fácil é ver que um retângulo como $\;QSNV\;$ é igual em área ao hexágono $\;PQRSTU\;$. E também já sabemos determinar um quadrado de área igual a um retângulo. Assim: Toma-se um segmento, por exemplo $\;QW\;$ igual à soma das dimensões do retângulo $\;QV+VN\;$ e uma semicircunferência de diâmetro $\;QW.\;$ Qualquer ponto dessa semicircunferência é vértice de um ângulo reto de lados a passar pelos extremos do diâmetro $\;Q, \;W. \;$ Se tomarmos $\;Z\;$ na semicircunferência e na perpendicular a $\;QW\;$ tirada por $\;V\;$, os triângulos retângulos em $\;V,\;$ $\;ZQV\;$ e $\;VWZ, \;$ e $$ \frac{QV}{VZ} = \frac{VZ}{VW}$$ ou, por ser $\;VW=VN,\;$ podemos afirmar que a área do retângulo $\;VQSN\;$ é igual à área do quadrado de lado $\, VZ:\;$ $$ QV \times VN = VZ^2$$
$\fbox{n=7}$ Encontrámos assim o quadrado de área igual à soma das áreas de 2 hexágonos regulares dados: $\;VXYZ\;\;\;\;$


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martin. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

27.5.16

Quadratura de um par de garras (de Leonardo)




Usando noções comuns, definições e teoremas de "Os Elementos" de Euclides,
determinar um quadrado com a mesma área da figura preenchida a vermelho $\;-\;\fbox{n=1}\;-\;$ limitada exteriormente por 2 arcos de circunferências iguais (três quartos de uma e um quarto de outra) e interiormente por uma circunferência tangente aos dois arcos referidos.
Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução/demonstração.




©geometrias, 26 maio 2016, Criado com GeoGebra




$\fbox{n=2}\;\;\;\;$ As duas circunferências iguais são centradas em $\;O\;$ e em $\;E\;$ e ambas a passar por $\;A\;$ e por $\;D.\;$ Os seus
$\;\;\;\;\;\;\;\;\;\;\;\;$arcos, que limitam exterioremente a figura dada, são $\;\widehat{DGA}\;$ da circunferência $\;E_A\;$ e $\;\widehat{AJD}\;$ de $\;O_A ,\;$ sendo
$\;\;\;\;\;\;\;\;\;\;\;\;$obviamente $\;\angle D\hat{O}A\;$ um ângulo reto.
$\;\;\;\;\;\;\;\;\;\;\;\;$ A circunferência $\;M_G\;$ que limita interioramente a figura é tangente em $\;G\;$ a $\;\widehat{DGA}\;$ e em $\;J\;$ a $\;\widehat{AJD}, \;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ sendo $\;GJ\;$ um dos seus diâmetros.
$\fbox{n=3}\;\;\;\;$ O quadrilátero $\;AODE\;$ é um quadrado por ser equilátero $\;AO=OD=DE=EA\;$ (raios de circunferências
$\;\;\;\;\;\;\;\;\;\;\;\;$ iguais) e equiângulo (ângulos retos por construção e por serem os raios de uma tangentes à outra)
$\fbox{n=4}\;\;\;\;$ Também são quadrados (e iguais) $\;ABCD\;$ e $\;DLKA,\;$ de lado $\;DA\;$ inscritos respetivamente em $\;O_A\;$ e
$\;\;\;\;\;\;\;\;\;\;\;\;$ $\;E_A .\;$ Como $\;AOD\;$ é um triângulo isósceles e retângulo em $\;O, \;$ $\;AD^2= 2\times AO^2, \;$ que é o mesmo que
$\;\;\;\;\;\;\;\;\;\;\;\;$ dizer que a área de $\;ABCD\;$ é dupla da área de $\;AODE.\;$
$\fbox{n=5}\;\;\;\;$ O círculo $\;M_G\;$ é igual (e igual em área) ao círculo $\;O_H\;$ inscrito no quadrado $\;ABCD\;$ sendo o seu raio
$\;\;\;\;\;\;\;\;\;\;\;\;$metade do lado $\;AB\;$ do quadrado a ele circunscrito.
$\;\;\;\;\;\;\;\;\;\;\;\;$Como $\;HE = HO = AH = HD, \;$ o quadrado $\;AODE\;$ é igual em área a um qualquer quadrado inscrito
$\;\;\;\;\;\;\;\;\;\;\;\;$ em $\,O_H\;$ ou em $\;M_G .\;$ Como a razão das áreas dos quadrados inscritos nas circunferências $\;O_A\;$ e $\;O_H\;$ é
$\;\;\;\;\;\;\;\;\;\;\;\;$de 1 para 2, também a razão entre as áreas dos círculos $\;O_H\;$ e $\;O_A\;$ é de 1 para 2 e a coroa circular limitada
$\;\;\;\;\;\;\;\;\;\;\;\;$por esses dois círculos tem área igual à do círculo menor $\;O_H\;$ ou do círculo $\;M_G .\;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ Vimos assim que se ao círculo de centro $\;O\;$ que passa por $\;A\;$ subtrairmos o círculo de centro $\;M\;$ que
$\;\;\;\;\;\;\;\;\;\;\;\;$ passa por $\;G\;$, restar-nos-á uma área igual à deste último círculo (que é em área é metade do primeiro.
$\;\;\;\;\;\;\;\;\;\;\;\;$ Mas não chega. Para termos como resto a nossa figura vermelha, além de subtraírmos ao círculo $\;O_A\;$ o
$\;\;\;\;\;\;\;\;\;\;\;\;$círculo $\;M_G\;$ é preciso retirar $\;(AGDIA)\;$ ou $\;|AHDIA) + (AGDHA|\;$
$\fbox{n=6}\;\;\;\;$ Na entrada anterior, já vimos que a relação que existe entre as áreas destes bocados tracejados (entre cada
$\;\;\;\;\;\;\;\;\;\;\;\;$lado do quadrado inscrito numa circunferência e a circunferência) se relacionam na mesma razão existente
$\;\;\;\;\;\;\;\;\;\;\;\;$entre as áreas dos quadrados inscritos. No caso. como a área de $\;O_A\;$ é dupla da área de $\;M_G\;$, então
$\;\;\;\;\;\;\;\;\;\;\;\;$$\;|AHDIA)\;$ vale dois dos bocados tracejados ente o quadrado $\;GSJT\;$ e a circunferência $\;M_G.\;$ O outro
$\;\;\;\;\;\;\;\;\;\;\;\;$bocado $\;(AGDHA|\;$ que é preciso retirar ainda ao $\;O_A\;$ vale os outros dois bocados entre $\;GSJT\;$ e $\;M_G\;$
$\fbox{n=7}\;\;\;\;$ Subtraímos ao círculo $\;O_A\;$ o círculo $\;M_G\;$ e ficámos com uma área igual à do círculo $\;M_G .\;$ Para termos
$\;\;\;\;\;\;\;\;\;\;\;\;$uma área igual à nossa figura inicial é ainda preciso subtrair a $\;M_G\;$ o equivalente a $\;(AGDIA),\;$ o que
$\;\;\;\;\;\;\;\;\;\;\;\;$ fizemos. O que sobrou foi um quadrado de lado igual ao raio $\;OA\;$ do círculo maior $\;O_A\;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

13.5.16

Quadratura de um "crescente" (lúnula , Hipocrates)


Ao filósofo / médico / matemático grego Hipocrates de Cós (n. 460 A.C. em Cós - f. 370 A.C. em Lárissa) é atribuído o estudo de várias figuras limitadas por por dois arcos de circunferências (dos quais um é semicircunferência e outro é um arco de circunferência correspondente à corda diâmetro da anterior) a que chamou lúnulas. Nesta entrada, procuramos ver que uma determinada lúnula (crescente) tem área igual a um dado quadrado.

Usando noções comuns, definições e teoremas de "Os Elementos" de Euclides,
determinar um quadrado com a mesma área de uma dada lúnula que tem como diâmetro do primeiro arco (semicircunferência) o lado do quadrado inscrito na circunferência do segundo arco.
Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução/demonstração.




©geometrias, 12 maio 2016, Criado com GeoGebra



$\fbox{n=1}\;\;\;\;$ Apresenta-se a lúnula em estudo e da qual intentaremos uma quadratura.
$\fbox{n=2}\;\;\;\;$ As duas circunferências em causa são uma com centro em $\;O\;$ e diâmetro $\;AB\;$ e outra de centro em $\;C\;$ e raio$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ $\;AC\;$ circunscrita ao quadrado de lado $\;A, \;$ no caso $\;ABEF\;$
$\fbox{n=3}\;\;\;\;$ Na figura estão em evidência o quadrado $\;ADBC\;$ inscrito na circunferência de centro $\;O\;$ e diâmetro $\;AB,\;$ o$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ quadrado $\;ABEF\;$ inscrito na circunferência de centro $\;C\;$ e raio $\;AC\;$
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ O quadrado $\;ADBC\;$ está dividido em dois (quatro) triângulos retângulos. Tomemos o triângulo $\;ABC\;$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ retângulo em $\;C\;$ e retenhamos que a área do quadrado de lado $\;AB\;$ é igual à soma das áreas os quadrados $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ de lados $\;BC\;$ e $\;CA\;$ (I.47 - Teor. de Pitágoras)
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ Como $\;BC=CA\;$ podemos dizer que a área do quadrado de lado $\;AB\;$ é o dobro da área do quadrado de $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$lado $\;BC\;$ (ou $\;CA$ ): $\; — AB^2 = 2 \times BC^2.\;$
$$\;\mathfrak{area}[ABEF] = 2\times \mathfrak{area}[ADBC] \;$$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$ e, por isso, a razão entre as áreas dos círculos também será de 1 para 2: $$\;\mathfrak{area}(C,\;CA) = 2 \times \mathfrak{area}(O,\;OA) \;$$
$\fbox{n=4}\;\;\;\;$ Na figura ilustramos as diferenças de cada um dos círculos para os seus quadrados inscritos para esclarecer$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ que se retirarmos à área de $\;(C, \;CA)\;$ quatro áreas iguais a $\;(AMBOA]\;$ ficamos com a área do quadrado$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;[ABEF].\;$ De igual modo, acontece com $\;(O, \;OA)\;$ e $\;[ADBC].\;$
$\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(C,\;CA) - 4\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ABEF]\;\;$ que é o mesmo que
$\;\;\;\;\;\;\;\;\;\;\;\;\; 2\times \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(AMBOA] = 2\times \mathfrak{area} [ADBC],\;$ e dividindo por dois $\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(O,\;OA) - 2\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ADBC].\;$ E, porque
$\;\;\;\;\;\;\;\;\;\;\;\; \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(ADA] = \mathfrak{area}[ADBC],\;$ é obvio que $$\;\mathfrak{area}(AMBOA] = 2\times \mathfrak{area}(ADA].\; $$ $\;\;\;\;\;\;\;\;\;\;\;\;$Podemos concluir que $$\;\mathfrak{area}(AMBOA] = \mathfrak{area}(ADA] +\mathfrak{area}(DBD] .\; $$
$\fbox{n=5}\;\;\;\;$ Tirando $\;\mathfrak{area} (AMBOA] \;$ à semicircunferência $\;\mathfrak{area}(ADBO]\;$ ficamos com a $\;\mathfrak{area}(ADBMA(\;$ da lúnula Por $\;\;\;\;\;\;\;\;\;\;\;\;$outro lado, vimos que tirando $\;\mathfrak{area}(BCB] +\mathfrak{area}(CAC]\; $ à semicircunferência $\;\mathfrak{area}[AOCBCA)\;$ ficamos $\;\;\;\;\;\;\;\;\;\;\;\;$com o triângulo retângulo $\; \mathfrak{area}[ABC].\;$ Como iguais subtraídos de iguais são iguais (noção comum 3),$\;\;\;\;\;\;\;\;\;\;\;\;$ podemos concluir que $$\mathfrak{area}(ADBMA( = \mathfrak{area}[ABC]$$
$\fbox{n=6}\;\;\;\;$ E a área do triângulo $\;[ABC]\;$ é obviamente igual à área do quadrado $\;[AOCJ],\;$ por exemplo. Assim fica feita a $\;\;\;\;\;\;\;\;\;\;\;\;$quadratura do "crescente".



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

5.5.16

Quadratura de um pentágono dado


Nas últimas entradas, fizemos construções de triângulo equivalente a polígono dado e também de construção de paralelogramo equivalente a um triângulo. Podemos assim dizer que, com régua e compasso, podemos construir paralelogramo (mesmo com um certo lado e um certo ângulo) equivalente a um qualquer polígono. Como um retângulo é um paralelogramo de ângulos retos, podemos construir um retângulo equivalente a um polígono dado e, como já tratámos da construção de um quadrado equivalente a retângulo dado, podemos construir um quadrado equivalente a um qualquer polígono. Deixamos aqui as referências das nossas entradas que trataram desse problema:

  1. 18.3.15
    Um primeiro exemplo de proposição de álgebra geométrica, usando áreas (o corta e cola)
    PROP. V. TEOR. Livro II
    Se AB for dividido em duas partes iguais por C e em duas partes desiguais por D, o retângulo de lados AD,BD acrescentado ao quadrado de lado CD e igual ao quadrado de lado BC - metade de AB

  2. 21.3.15
    elementos: segundo exemplo de álgebra geométrica (Livro II, Prop. VI)
    Livro II - PROP. VI. TEOR.
    Sendo uma reta AB, e nela o ponto C que divide o segmento AB em duas partes iguais e um ponto D tal que AD=AB+BD, então o retângulo de lados iguais a AB e BD acrescentado do quadrado de lado igual a CB é igual ao quadrado de lado igual a CD.

  3. 26.3.15
    Elementos: média e extrema razão; álgebra geométrica (Prop. XI do Livro II)
    Livro II - PROP. XI. PROB.
    Dividir uma linha reta de sorte que o retângulo de tôda e de uma parte seja igual ao quadrado da outra parte

  4. 4.4.15
    Elementos: potência de um ponto (Livro III, PROP. XXXVI. TEOR.)
    Livro III, PROP. XXXVI. TEOR.
    Se de um ponto qualquer fora de um círculo se tirarem duas linhas retas, das quais uma corte o círculo, e a outra o toque; será o retângulo compreendido por toda a reta que corta o círculo e pela parte dela que fica entre o dito ponto e a circunferência convexa do círculo, igual ao quadrado da tangente.

  5. 11.4.15
    Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)
    Livro III - PROP. XXXVII. TEOR.
    Se de um ponto qualquer fora de um círculo se tirarem duas retas, das quais uma corte o círculo, e a outra chegue somente até a circunferência; e se o retângulo compreendido pela reta inteira que corta o círculo e pela parte dela que fica entre o dito ponto e a parte convexa da circunferência, fôr igual ao quadrado da reta incidente sôbre a circunferência, será a reta incidente tangente do círculo
Por isso, nesta entrada de hoje não há qualquer novidade. Só não resistimos a publicar uma construção do triângulo equivalente a um pentágono muito mais elegante que qualquer das que apresentámos antes e ir até ao ponto de fazer a quadratura do pentágono (determinar um quadrado igual em área (ou equivalente) a um pentágono dado).

Avaliará se valeu a pena.

Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução.




©geometrias, 5 maio 2016, Criado com GeoGebra



$\fbox{n=0}\;\;\;\;$ Para além do cursor $\;\fbox{n=0,1, 2,3,4,5, 6},\;$ temos o pentágono $\;[ABCDE].\;$

$\fbox{n=1}\;\;\;\;$ Prolongamos $\;AE\;$ Traçamos $\;AC\;$ e uma paralela a esta tirada por $\;B\;$ que vai intersectar $\;AE\;$ em $\;F.\;$ Do $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ outro lado, traçamos $\;CE\;$ e a paralela a ela tirada por $\;D\;$ que intersecta $\;AE\;$ em $\;G.\;$
$\fbox{n=2}\;\;\;\;$ Os triângulos $\;[ABC]\;$ e $\;[AFC]\;$ são iguais em área e pela mesma razão são iguais em área os triângulos $\\\;\;\;\;\;\;\;\;\;\;\; \;[CDE]\;$ e $\;[CGE].$

$\;\;\;\;\;\;\;\;\;\;\;\; \mathfrak{area}[ABCD]=\mathfrak{area}[ABC]+\mathfrak{area}[ACE]+\mathfrak{area}[CDE]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =\mathfrak{area}[AFC]+\mathfrak{area}[ACE]+\mathfrak{area}[CGE]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =\mathfrak{area}[FCG] $

$\fbox{n=3}\;\;\;\;$ Como já vimos em anteriores entradas, o triângulo $\;[FCG]\;$ tem área igual ao paralelogramo retângulo
$\;\;\;\;\;\;\;\;\;\;\;\;\; [GHIM]\;$ por ser $\;M\;$ o ponto médio de $\;FG\;$ ou $\;FG= 2 \times MG\;$ e $\;HI\;$ incidir em $\;C\;$

$\fbox{n=4}\;\;\;\;$ O lado do quadrado equivalente ao retângulo $\;[GHIM]\;$ é o meio proporcional $\;x\;$ na proporção cujos extremos $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ são as dimensões do retângulo: $$x^2 =GA \times GH \Longleftrightarrow \frac{MG}{x} =\frac{x}{GH}....................\mbox{Euclides (300 AC) Elelemntos VI.13}$$ $ \; \;\;\;\;\;\;\;\;\;\;\;\;$Bastará acrescentar ao lado $\;MG\;$ do retângulo o outro lado $\;GH.\;$ Assim: Com centro em $\;G\;$ e a passar por$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;H,\;$ traçamos a circunferência que determina $\; J\;$ na sua intersecção com a reta $\;FG\;$

$\fbox{n=5}\;\;\;\;$ $MJ =MG+GH$ é o diâmetro da circunferência que intersecta a reta $\;GH\;$ no ponto $\;L\;$ e Thales (600 AC) $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$descobriu e provou que o ângulo inscrito numa semicircunferência $\; [MLJ] \;$ é retângulo em $\;L\;$ - 1º Teorema $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$(de Thales (?)) - e, $\;GL\;$ é o meio proporcional que procuramos.

$\fbox{n=6}\;\;\;\;$ O quadrado $\;[GLRQ]\;$ é um belo representante dos quadrados equivalentes ao pentágono $\;[ABCDE]\;\;\; \square $



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

um dos botões serve para reiniciar o 3 de Maio, sempre

29.4.16

Construir um triângulo equivalente a um polígono


Na entrada anterior, resolvemos o problema repetindo a construção (I.44) tantas vezes quantos os triângulos em que dividamos o polígono dado.

No caso da nossa ilustração abaixo, temos um polígono $\;[ABCDEFG]\;$ e tomamos o segmento $\;JK\;$ para lado do paralelogramo equivalente a $\;[ABCDEFG]\;$ a construir. Em vez de tomarmos uma decomposição do polígono em triângulos e para cada um desses triângulos construir o paralelogramo equivalente, vamos previamente proceder à construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ e só depois construir o paralelogramo equivalente a esse triângulo.

©geometrias, 29 abril 2016, Criado com GeoGebra



Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do fundo à direita, pode seguir os passos da resolução.


O processo de construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ é feito de repetições da determinação de um triângulo equivalente a um quadrilátero. Assim:

$\fbox{1,2}\;\;$

Escolhemos para começar o quadrilátero $\;[ABCD]\;$ e a sua diagonal $\;AC.\;$ Determinamos o ponto $\;P\;$ de intersecção de $\;CD\;$com a reta paralela a $\;AC\;$ tirada por $\;B.\;$ Os triângulos $\;[APC]\;$ e $\;[ABC]\;$ são iguais em área por terem uma base comum $\;AC\;$ e os terceiros vértices $\;B,\;P\;$ sobre $\;BP\;$ paralela a $\; AC\;$ comum.
Como $\;\mbox{Área}_{[ABCD]} = \mbox{Área}_{[ABC]} + \mbox{Área}_{[ACD]},\; \;\mbox{Área}_{[APD]}=\mbox{Área}_{[APC]} + \mbox{Área}_{[ACD]},\;$ podemos dizer que $\;\mbox{Área}_{[ABCD]}= \mbox{Área}_{[APD]},\;$ já que, como vimos, $\; \mbox{Área}_{[ABC]} = \mbox{Área}_{[APC]}.\;$

$\fbox{3,4}\;\;$

Tomamos de seguida $\;[APDE]\;$ e a diagonal $\;AD\;$ e determinamos $\;Q\;$ na intersecção de $\;DE\;$ com a paralela a $\;AD\;$ tirada por $\;P.\;$ E, como o anteriormente visto em procedimento análogo, são equivalentes os triângulos $\;[APD]\;$ e $\;[AQD].\;$
E, em consequência, $\; \mbox{Área}_{[APDE]} = \mbox{Área}_{[AQE]}, \;$ já que $\; \mbox{Área}_{[APDE]} =\mbox{Área}_{[APD]}+\mbox{Área}_{[ADE]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\mbox{Área}_{[AQD]}+\mbox{Área}_{[ADE]}\;$

$\fbox{5,6}\;\;$

Com o mesmo raciocínio se toma agora $\;[AQEF],\;$, a sua diagonal $\;AE\;$ e determinamos o ponto $\;R\;$ de intersecção da reta $\;EF\;$ com a paralela a $\;AE\;$ tirada por $\;Q.\;$
E, como $\;\mbox{Área}_{[AQE]} = \mbox{Área}_{[ARF]}, \; \;\; \mbox{Área}_{[AQEF]} = \mbox{Área}_ {[ARF]}\;$.

$\fbox{7}\;\;$

Finalmente, para o nosso caso, consideremos o quadrilátero $\;[ARFG],\;$ a sua diagonal $\;AF\;$ e determinamos o ponto $\;S\;$ na intersecção de $\;EF\;$ com a paralela a $\;AF\;$ tirada por $\;G.\;$ (Podíamos ter optado por um ponto $\;S\;$ na intersecção de $\;GF\;$ com a paralela a $\;AF\;$ tirada por $\;R).\;$
E, como $\; \mbox{Área}_{AFS}=\mbox{Área}_{AFG}, \; \mbox{Área}_{ARFG}= \mbox{Área}_{ARF}+\mbox{Área}_{FGA} =\mbox{Área}_{ARF}+ \mbox{Área}_{FSA} = \mbox{Área} {ARS}.\;$ «
Finalmente podemos concluir que
$$\;\mbox{Área}_{[ABCDFG]} = \mbox{Área}_{[ARS]}\;$$ De facto, os passos da construção acompanham
$\displaystyle \mbox{Área}_{[ABCDEFG]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\underbrace{\mbox{Área}_{[ABC]}+ \mbox{Área}_{[ACD]}}+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\mbox{Área}_{[ABCD]} \;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\underbrace{\mbox{Área}_{[APD]}\;\;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]}} \;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[APDE]}\;\;\;\;\;\;\;\;\;\;\;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \underbrace{\mbox{Área}_{[AQE]}\;\;\;\;\;\; \;\;\;\;\;\;\;\;+\mbox{Área}_{[AEF]}} \;\;+ \;\;\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[AQEF]} \;\;\;\;\;\;\;\;\;\;\;\; \;+\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underbrace{\mbox{Área}_{[ARF]} \,\;\;\;\;\;\;\;\;\;\;\;\;\; \;+ \mbox{Área}_{[AFG]}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARS]} $

$\fbox{8, 9,10}\;\;$

E bastar-nos-á determinar o paralelogramo equivalente a um triângulo $\;[ARS], \;$ no caso, $\;[A'MIS']\;$ ou $\;[KJVU]\;$, …


Nota: A sequência de procedimentos aqui usados para determinar um triângulo equivalente a um heptágono (no caso aqui ilustrado) serve bem para problemas com polígonos de qualquer número de lados.


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

20.4.16

Construir um paralelogramo equivalente a um polígono


As últimas entradas foram dedicadas a problemas de construção de paralelogramos equivalentes a triângulos dados, ... A proposição I.45 de "Os Elementos" trata do problema de construção de um paralelogramo de área igual a um polígono, sendo dados um lado e um ângulo do paralelogramo a construir .

Este problema resolve-se com recurso às construções de paralelogramo equivalente a um triângulo dado que é repetida tantas vezes quantos os triângulos em que dividamos o polígono em causa.

No caso da nossa ilustração abaixo, temos um polígono $\;ABCDEF\;$ e tomamos para lado do paralelogramo o segmento $\;GH\;$ e um ângulo $\; \angle STU \;$ a que deve respeitar o ângulo do paralelogramo de vértice $\;H.\;$ Pode variar o ângulo $\; \angle STU,\;$ o comprimento de $\;GH.\;$

©geometrias, 20 abril 2016, Criado com GeoGebra

No caso,decompusemos o nosso polígono $\;ABCDEF\;$ de 6 lados em 4 triângulos $\;ABC, \;ACD, \;ADE, \;AEF.\;$ Começando por construir um paralelogramo de lado $\;GH\;$ de área igual a $\;ABC\;$ (exatamente, como fizemos em I.44). Depois construímos um paralelogramo de área igual a $\;ACD\;$ agora sobre o lado do primeiro paralelogramo oposto a $\;GH, \;$ etc. Desse modo, construímos quatro paralelogramos, cada um deles com área igual a um dos triângulos em que decompomos o polígono. Assim o paralelogramo $\;GHILJ\;$ e o polígono $\;ABCDEF\;$ são equivalentes (de áreas iguais). Claro que este processo pode ser usado para construir paralelogramos equivalentes a polígonos de qualquer número de lados.

Para evitar a complicação que este processo euclidiano de repetição acarreta, convém lembrar que se pode sempre construir um triângulo equivalente a um polígono(qualquer que ele seja) e depois só haverá necessidade de aplicar os procedimentos (I.44).


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

17.4.16

Novo problema de construção de paralelogramo de área igual à de um triângulo.


A Proposição (I.42) tratava do problema de construção de um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
Com recurso a essa construção I.42 e também a I.43 em que se mostrou que paralelas aos lados tiradas por qualquer ponto de diagonal de um paralelogramo, este fica dividido em quatro paralelogramos, dos quais dois são sempre iguais em área,
vamos resolver um novo problema de construção.

Proposição I.44 Problema:   Dados um segmento $\;AB\;$, um triângulo $\; \Delta PQR\;$ e um ângulo $\;\angle S\hat{T}U\;$, construir um paralelogramo $\;ABHI\;$ tal que $\;angle ABH = \angle STU\;$ e ainda $\;[ABHI]\; $ e $\;[PQR]\;$ sejam iguais em área.



©geometrias, 17 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor $\;\fbox{n=i}, i=0,1, 2, \ldots, 7\;$
  1. $\;n=0 \;\;\;AB, \; \Delta PQR , \; \angle STU \;$
  2. $\;n=1 \; \;\;$ Acrescentam-se
    • $\;R'\;$ na reta $\;AB\;$, de tal modo que $\;BR'=QR\;$
    • $\;(B, QP) . (R', PR) \rightarrow P'\;\;\;\;$ e, assim, $\; P'B=PQ, \; P'R'=PR\;$
    para $\;\Delta BR'P' =\Delta PQR\; $ (LLL) e, por isso, serem iguais em área.
  3. $\;n=2\; \;\;$ Acrescentam-se os pontos $\;C\;$ médio de $\;BR',\;$ e $\; S', \;U' \:$ tais que $\;BS'=BU'=BS\;$ e $\;S'U'=SU\;$ que, como vimos nas entradas anteriores, chegam para determinar um paralelogramo de área igual à área de $\;PQR\;$ e com um ângulo em $\; B\;$ igual a $\;\angle STU \;$ de lados $\;BC\;$ e sobre as retas $\;BU', \;$ paralela a $\;BC\;$ tirada por $\;P'\;$ e paralela a $\;BU'\;$ tirada por $\;C.\;$
  4. $\;n=3\; \;\;$ Acrescentam-se os segmentos $\;BE,\;CD,\;ED,\;$ em que $\;D, \;E\;$ são intersecções das retas referidas anteriormente
  5. $\;n=4\; \;\;$ Acrescenta-se o paralelogramo $\;ABEFP\;$ com um lado -$\;BE\;$ - comum a $\;BCDE\;$
  6. $\;n=5\; \;\;$ A reta $\;BF\;$ interseta a reta $\;DC\;$ em $\;G.\;$ E acrescenta-se o segmento $\;FG\;$ que passa por $\;B\,$
  7. $\;n=6\; \;\;$ As retas $\;EB,\;FA\; $ intersectam a paralela a $\;AB\,$ tirada por $\;G\;$ em, respectivamente, $\;H, \;I.\;$ Ficam assim definidos vários novos paralelogramos, de que nos interessam os seguintes: $\;BCGH, \; ABHI,\; FDGI\;$
  8. $\;n=7\; \;\;$ Do paralelogramo $\;FDHI,\;\;FG\;$ é uma das suas diagonais, e $\;ABHI, DEBG\;$ estão nas condições consideradas em (I:43, da última entrada) para serem iguais em área. Fica assim demonstrado que o paralelogramo $\;ABHI,\;$ para além de ter $\,AB\;$ como lado, é igual em área ao triângulo $\;\Delta PQR\;$        □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

15.4.16

Trabalhar com áreas (usar noções comuns numa demonstração)


A proposição 43 do Livro I trata da divisão de um paralelogramo em quatro paralelogramos com um vértice comum sobre uma das suas diagonais sendo dois deles iguais em área. Veja-se a figura abaixo.
Toma-se um paralelogramo $\;[ABCD]\;$ e escolhe-se uma diagonal, por exemplo, $\;AC\,$ e um ponto $\;K\;$ sobre ela. Por $\;K\;$ tiramos uma paralela $\,GH\;$ a $\;AB\;$ e outra $\;EF\;$ a $\;AD.\;$ O paralelogramo fica dividido em 4 paralelogramos, a saber: $\;HAEK,\; FCGK, \;GBEK, \; FDHK.\;$ Prova-se que os últimos dois, sombreados, são iguais em área.




©geometrias, 14 abril 2016, Criado com GeoGebra
Pode mover $\;A,\;B,\;C\;$ e $\;K\;$ sobre a diagonal $\;AC\;$.

Por ser $\;ABCD\;$ um paralelogramo (I.33) $\;AB = CD \; \mbox{e} \; AD=BC. \;$ Por razões análogas, podemos dizer que $\;AE=HK, \;AH=EK, \; FC=GK, \;CG=FK. \;$ Podemos por isso dizer que são congruentes os seguintes pares de triângulo (I.8: LLL): $\;[ABC]= [CDA],\;[AEK] = [KHA], \;[KGC]=[CFK].\;$

Aos dois triângulos $\;[ABC],\; [CDA]\;$ iguais retiramos, respetivamente, $\;[AEK],\;[KGC]\;$ e $\; [KHA], \;[CFK]\;$ sobrando do primeiro triângulo $\; [ABC]\;$ o paralelogramo $\;[GBEK]\;$ e, do segundo triângulo $\;[CDA]\;$, o paralelogramo $\;[FDHK].\;$
Como de iguais subtraídos de iguais sobram iguais, $\;[GBEK]\;$ e $\;[FDHK]\;$ são iguais em área.        □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer.ew York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

12.4.16

Construir um paralelogramo equivalente a um triângulo dado e com um certo ângulo


Para as próximas construções que vamos apresentar, além da entrada anterior (tansporte de ângulos) precisamos de lembrar algumas das entradas de 2015 (de 17.2.15 -- Igualdade n'Os Elementos de Euclides - contexto e não definido-- a 11.4.15 -- Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)) que são referidas ao conceito de igualdade em área de figuras planas.

A excursão então feita pelo livro I de "OS Elementos" introduzia os conceitos de área e equivalência com vista a demonstrar as proposições I.47 e I.48 (teorema de Pitágoras e seu recíproco) e alguns resultados de outros livros com o fito de resolver a construção de um pentágono regular inscrito num dado círculo (IV. 11). Algumas das proposições (mais problemas de construção) abordadas então são resultados de álgebra geométrica (?) que aparecem sugeridos por problemas de áreas e são demonstradas usando igualdades (em área entre figuras) e sua axiomática (?).


Vamos resolver problemas de construção em que se recorre ao transporte de ângulos e à noção de área de uma figura plana.
Proposição (I.42) Problema: Construir um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
(1) Dados um triângulo $\;[ABC]\;$ e um ângulo $\;\angle D\hat{E}F,\;$ construir um paralelogramo $\;[GHIJ]\;$ tal que $\; \angle J\hat{G}H= \angle D\hat{E}F\;$ e $\; [GHIJ]=[ABC] \;$ (igualdade em área).

Na figura que se segue, como dados temos um triângulo $\;ABC\;$ e um ângulo $\;\angle DEF,\;$ algumas ferramentas disponíveis (que agora incluem o compasso da nossa vida). Se não puder ou não quiser dar-se a esse trabalho, pode acompanhar a nossa resolução, fazendo variar os valores de $\;\fbox{n}\;$ no cursor ao fundo.



©geometrias, 10 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n.
  1. em cima(1)
  2. Começamos a tirar por $\;A\;$ uma reta paralela a $\;BC\;$ que se faz --(I.31)-- por transporte do $\;\angle C\hat{B}A\;$ para $\;A\;$ como vértice e do outro lado de $\;AB\;$.De modo análogo, tiramos por $\;C\;$ uma paralela a $\;BA\;$. O triângulo $\;ACG_1\;$ é geometricamente igual a (ou congruente com) $\;ACB\;$ e, por isso, têm áreas iguais e a área do paralelogramo $\;[ABCG_1]\;$ é dupla da ára do triângulo $\;[ABC]\;$ --(I.40)-- e,
  3. em consequência, $\;ABC\;$ é igual em área ao paralelogramo $\;GCG_1H_1\;$ em que $\;G\;$ é o ponto médio de $\;BC\;$
  4. Como esse paralelogramo é igual em área a todos os paralelogramos que tenham $\;GC\;$ como lado e outro sobre a paralela já tirada por $\;A\;$ -- (I.36) -- para obter um paralelogramo que satisfaça o requerido, bastará transportar o ângulo $\;\angle DEF\;$ para $\;GC.\;$ O segundo lado do ângulo de vértice em $\;G\;$ e primeiro lado $\; GC\;$ define $\;H\;$
  5. De modo análogo se obtém a paralela a $\;GH\;$ tirada por $\;C\;$ que determina sobre $\;AH\;$, o vértice $\;I\,$ em falta, do paralelogramo $\;GHIC\;$ igual em área ao triângulo $\;ABC\;$ em que um dos ângulos é igual ao ângulo dado.



    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

7.4.16

Transporte de um ângulo: passos da construção: economia, método e razão. Existência.



A construção da entrada de 16 de Janeiro de 2014, intitulada
Com compasso e régua euclidianos, transferir distâncias
cria o conceito correspondente ao compasso actual, ao demonstrar que com circunferências (definidas por um ponto e um intervalo) e as retas (definidas por dois pontos) se podem transferir distâncias (segmentos), isto é construir um segmento congruente a outro. Este conceito de compasso, correspondente a uma série de operações com retas e circunferências, passa a ser usado em futuras construções.
A proposição I.23 dos "Elementos" trata da transferência de um ângulo. Pode enunciar-se: Dados um segmento $\,[AB]\;$ e um ângulo de vértice $\;D,\;$ e lados $\; DC, \; DE\;$ ou $\; \angle CDE\;$, construir um ângulo $\;\angle BAH\;$ congruente com $\;\angle CDE\;$
Habitualmente segue-se o esquema:
  1. $\;(D,\;r)\;$ e $\;(A, \; r)\;$ congruentes ($\;r\;$ qualquer)
    • $\;(D,\;r). \dot{D}C = {E}\;$
    • $\;(D,\;r). \dot{D}E = {F}\;$
    • $\;(A, \;r). \dot{A}B = {G}\;$
  2. $\;(G,\;EF)\;$
    • $\;(G,\;EF). (A,\;r|) = {\ldots, \;H}\;$
  3. $\;AH\;$
    • $\; AG =AH= DE=DF\;$ e
      $\; EF=GH\;$ -- cordas iguais correspondentes a arcos iguais de circunferências iguais (congruentes). $$\;(LLL) \rightarrow [GAH]=[EDF]\;$$ $$\angle BAH = \angle GAH = \angle EDF = \angle CDE$$
Resumindo: a transferência pedida exige quatro traçados: três circunferências (compasso novo) e uma reta (régua).


A construção que pode fazer a seguir com as ferramentas euclidianas (únicas fornecidas) segue o raciocínio que apresentámos e que se resume a transferir distâncias, como deve ter observado. Se não quiser fazer a construção, pode seguir as etapas da construção (baseadas no esquema descrito na entrada citada acima) fazendo variar os valores de $\; \fbox{n=i},\; i=1, 2, \ldots, \;6\; $





@geometrias, 7 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n. Procuramos determinar um ponto $\;H: \; \angle BAH = \angle CDE,\;$ usando só a circunferência e a reta, e a partir dos cinco pontos $\;A,\;B,\;C,\;D,\;E.$
  1. Partindo dos cinco pontos $\; A,\; B,\;C, \; D,\; E,\;$ começamos por transferir $\;AB\;$ para $\;\dot{D}C\;$ e $\;\dot{D}E\;$ a partir de $\;D\;$
    1. $(D,DA), \; (A, AD)$
      • (D,DA). (A, AD) --> P : ADP é um triângulo equilátero
    2. $\;(A,\;AB)\;$ e $\;AP\;$
      • $\;(A,\;AB).AP \rightarrow Q \;$ sendo $\;AQ= AB\;$
    3. $\;(P, PQ=PA+AQ)\;$ e $\;PD\;$
      • $\;(P, PQ=PA+AQ) . PD\; \rightarrow R$, sendo $\;PR=PD+DR =PQ=PA+AQ,\;$ é $\;DR=AB\;$
    1. $\;(D, \;DR)=(D, \;AB)\;$ e $\;DE, \; DC\;$
      • $\;(D, \;AB) . DC \rightarrow F \;$ sendo $\;DF=AB\;$
      • $\;(D, \;AB) . DE \rightarrow G \;$ sendo $\;DG=AB\;$
  2. Já temos $\;DCF=DEG= AB.\;$ Procuramos $\;H: \; BH=FG\;$ o que é o mesmo que transferir $\;FG\;$ para uma reta a passar e começando em $\;B\;$
    1. $\;(F, \;FB)\;$ e $\,(B, \;BF)\;$
      • $\;(F, \;FB) . (B, \;BF) \rightarrow S$
      • $\;BF=FS=SB \;$
    2. $\;(F, \;FG)\; $ e $\;SF\;$
      • $\;(F, \;FG) . \;SF \rightarrow T\;$ sendo $\;FT=FG\;$
    3. $\; (S, \; ST)\;$ e $\;SB\;$
      • $\; (S, \; ST) . SB \rightarrow U\;$ sendo $\;ST=SF+FT=SF+FG= SB+FG\;$ e $\;SU= SB+BU.\;$ E, em consequência, $\;BU=FG\;$ já que $\;ST=SU\;$
    4. $\;(A, \;AB)\;$ e $\;(B, \;BU)\;$
      • $\;(A, \;AB) . (B, \;BU) \rightarrow H\;$ sendo $\;BH=BU=FG\;$
      • E assim temos os ângulos $\;\angle BAH = \angle FDG =\angle CDE. \;\;\;\;\;\;\;\;\;\;$ □

    Comparando o trabalho feito com o compasso novo com este trabalho que recorre só ao compasso euclidiano, compreendemos um pouco melhor a genialidade na organização do estudo por Euclids, na construção de cada conceito (proposição-- problema de construção--, como prova de existência também de novas ferramentas). A partir de pontos, retas e circunferências a geometria de uma imensidão de construtíveis integrados… é um jogo que podemos jogar solitariamente, mas que partilhamos com prazer.


    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

21.3.16

Construir um paralelogramo de que se conhecem as diagonais e um lado


Problema:
Construir um paralelogramo $\;[ABCD]\;$ de que conhecemos os comprimentos de um dos seus lados $\;a=AB\;$ e das suas diagonais $\; d_1=AC, \; d_2= BD.$

Um paralelogramo tem os lados opostos paralelos e de comprimentos iguais: $$\;AB\parallel CD \wedge AB=CD; \; BC\parallel DA \wedge BC=DA\;$$ e cada uma das suas diagonais encontra a outra no seu ponto médio, ou seja, há um ponto
$$\;M : \;\;\;\;AM = MC = \frac{d_1}{2},\;\;\; BM = MD = \frac{d_2}{2}\;$$

Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 21 março 2016, Criado com GeoGebra




Temos dados bastantes para construir um triângulo $\;[AMB]\;$ de lados $\;a=AB, \;\frac{d_1}{2}=AM, \; \frac{d_2}{2}=BM.\;\;\;\;\;$ E a partir dele, tudo se retira:
$\;\left(M,\;\frac{d_1}{2}, \right).AM \rightarrow C, \;\;\;\left(M,\;\frac{d_2}{2}\right).BM \rightarrow D\;$ □

200. Construire un parallèlogramme connaissant ses deux diagonales et un côté.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

17.3.16

Construir um trapézio conhecendo comprimentos das bases e amplitudes dos ângulos adjacentes a uma delas.


Problema:
Construir um trapézio $\;[ABCD]\;$ de que conhecemos os comprimentos das suas bases $\;a=AB, \;c=CD\;$ e os ângulos adjacentes a uma das suas bases $\;\beta=A\hat{B} C, \; \alpha= B\hat{A}D.$

De um trapézio $\;[ABCD]\;$ de bases $\;AB, \;CD\;$ e $\; \angle B\hat{A}D = \alpha\;$ qualquer reta que faça um ângulo igual a esse $\;\alpha\;$ com a reta $\;AB\;$ é paralela a $\;AD.\;$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 16 março 2016, Criado com GeoGebra



Para a determinação do vértice $\;C\;$ tomamos um ponto $\;E\;$ sobre $\;AB\;$ tal que seja $\;AE = CD. \;$
Tracemos o segundo lado de um ângulo de vértice em $\;E\;$ e primeiro lado $\;EB\;$. Sabemos que esse segunda lado é paralelo a $\;AD\;$ e, por isso, $\;C\;$ é um ponto desse segundo lado. Por outro lado, sabemos que está sobre o segundo lado do ângulo de vértice $\;B\;$ que faça um ângulo $\;\beta\;$ com o lado $\;BA\;$.
Tod o o problema de construção do trapézio em questão se resume pois a construir o triângulo de base $\;EB=a-c\;$ e ângulos adjacentes $\;\alpha, \; \beta\;$ cujo terceiro vértie é $\;C\;$
O quarto vértice $\;D\;$é a intersecção da paralela a $\;AB\;$ tirada por $\;C\;$ com a paralela a $\; EC\;$ tirada por $\;A.\; \;\;\;\;\;$ □

201. Construire un trapèze connaissant les deux bases et les angles adjacents à l'une de ces bases.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

10.3.16

Construir um trapézio de que conhecemos as bases e as diagonais


Problema:
Construir um trapézio de que se conhecem os comprimentos das bases AB (a=AB, c=CD) e das diagonais (e=AC, f=BD)




Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor na direita baixa da janela.


@geometrias, 10 março 2016, Criado com GeoGebra


Tomado um ponto $\;A\;$ qualquer e uma reta a passar por $\;A\;$ para suporte de uma base $\;AB,\;$ basta construir o triângulo com um vértice em $\;A\;$ de lados de comprimento $\;a+c\;$ (sobre a reta $\;AB\;$), $\; e, \; f.\;$
$\;C\;$ é um vértice deste triângulo:
Chamemos $\;E\;$ ao vértice desse triângulo sobre a reta $\;AB\;$ e na circunferência $\;(A, a+c).\;\; C\;$ está em $\;(A, e).(E, f).\;$
O ponto $\;D\;$ é intersecção das paralelas a $\;AB\;$ tirada por $\;C\;$ e a $\;EC\;$ tirada por $\;B.\;$ □

203. Construire un trapèze connaissant les bases et les diagonales..l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

2.3.16

Construir um quadrilátero convexo dados os lados e o ângulo de dois lados opostos


Problema:
São dados quatro segmentos $\;a, \;b,\;c,\;d\;$ e um ângulo $\;\alpha .\;$
Construir um quadrilátero convexo $\;ABCD\;$ tal que $\;AB=a,\;BC=b, \; CD=c, \; DA=d\;$ e $\; \angle \widehat{(AB, CD)} =\alpha.$

Este é um dos problemas para o qual os passos da construção se encontram por análise da figura do problema já resolvido. Se conhecemos o ângulo $\; \angle \widehat{(AB, CD)} =\alpha,$ ao tomarmos um ângulo de vértice num dos pontos $\;A\;$ (ou $\;D\;$) sendo um dos lados do ângulo a reta $\;AB,\;$ (ou $\;DC\;$) o outro lado será uma reta paralela a $\;DC\;$ (ou $\;AB\;$)
Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor centrado ao fundo da janela.

©geometrias. 1 março 2016, criado com GeoGebra


Tomamos um ponto $\;D\;$ qualquer e duas concorrrentes em $\;D\;$ fazendo um ângulo de amplitude $\; \alpha .\;$ Sobre uma dessas retas, tomamos $\;C\;$ na intersecção dela com a circunferência $\;(D, \;c).\;$ Na outra reta podemos tomar $\;F\;$ na sua intersecção com a circunferência $\;(D, a).\;$ Por ser $\; \angle \widehat{(DC, AB)} = \alpha = C\hat{D} F,\; \; \; AB \parallel DF.\;$
$\;B\;$ fica determinado como intersecção das circunferências $\;(F, \;d)\;$ e $\;(C, b)\;$
E $\;A\;$ fica determinado sobre a paralela a $\;DF\;$ tirada por $\;B\;$ à distância $\,a\;$ de $\,B.\;\;\;\;\; \;$ □

204. Construire un quadrilatère convexe connaissant les quatre côtés et l'angle formé par deux côtés non consécutifs..l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

25.2.16

Construir circunferências centradas nos vértices de um triângulo e tangentes duas a duas.


Problema:
É dado um triângulo $\;ABC.\;$ Determinar as 3 circunferências $\;(A,\; r_A), \; (B,\: r_B), \; (C,\; r_C)\;$ tangentes exterioremnte duas a duas.

A figura dinâmica que se apresenta a seguir ilustra o raciocínio (de análise) que suporta a construção e a construção ela mesma.Faça variar o valor de $\;n\;$ no seletor ao fundo da janela de construção.
Começamos por construir o triângulo de vértices $\;A,\;B,\;C\;$ e de lados $\;a=BC, \;b= AC, \; c=AB\;$. Circunferências centradas em $\;A\;$ e $\;B\;$ que sejam tangentes exteriormente têm raios $\;r_A,\;r_B\;$ tais que $\; r_A + r_B = AB = c.\;$ Pelas mesmas razões terá de ser $\; r_A + r_C = AC = b\;$ e $\; r_B + r_C = BC = a.\;$ Por isso, $\; 2r_A + 2r_B + 2r_C =a+b+c.\;$
Tomando um segmento $\;B'B''\;$ de comprimento igual ao perímetro $\;a+b+c\;$ do triângulo e o ponto $\;M\;$ médio de $\;B'B''\;$, sabemos agora que $\;B'M= r_A + r_B + r_C\;$ e, como $\;r_B + r_C = a, \; \; C'M = B'M-a = r_A.$
Conhecido $\;r_A\;$, podemos traçar $\;(A, \; r_A).\;$ que intersecta $\;AB \;$ e $\;AC\;$ nos seus pontos de tangência com as outras duas circunferências □

© geometrias: 3 março 2016, Criado com GeoGebra


159. Des sommets d'un triangle ABC comme centres, décrire trois circunféences tangentes deux à deux éxterieurement.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

16.2.16

Secantes a uma circunferência passando por um ponto exterior e que determinam cordas de comprimento dado


Problema:
São dados um ponto $\;P,\;Q\;$ um círculo $\;c\;$ e um comprimento $\;a\;$
Traçar por $\;P\;$ uma secante à circunferência $\;c\;$ que a corte em cordas de comprimento $\;a\;$

©geometrias. 16 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



As cordas da circunferência $\;c\;$ com um dado comprimento $\;a\;$ são tangentes a uma circunferência concêntrica com $\;c\;$. Tomando um ponto $\;F\;$ qualquer sobre $\;c\;$ e $\;G \in c:\; FG=a,\;$ essa circunferência fica determinada pelo centro $\;O\;$ e pelo ponto $\;H\;$ médio de $\;FG.\;$ As tangentes a $\;(O, OH)\;$ tiradas por $\;P\;$ determinam cordas de $\;c: \;$ $\;LM,\;NQ;$ e $\;LM=NQ=a\;$

149. On donne un cercle et un point P. Mener par P une sécante telle que la corde interceptée ait une longueur donné l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

14.2.16

Numa circunferência inscrever um triângulo retângulo


Problema:
São dados dois pontos $\;P,\;Q\;$ e uma circunferência $\;(O)\;$
Inscrever na circunferência $\;(O)\;$ um triângulo retângulo tal que a reta de um cateto passe $\;P\;$ e a reta do outro cateto passe por $\;Q.\;$

©geometrias. 14 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Se um dos lados de um ângulo reto tem de passar por $\;P\;$ e outro por $\;Q\;$ então o seu vértice será um ponto da circunferência de diâmetro $\;PQ.\;$ Como o ângulo reto tem vértice sobre a circunferência $\;(O)\;$ este é um dos pontos da interseção das duas circunferências citadas - a que chamamos $\;A\;$. Os restantes vértices serão $\;B\;$ na interseção de $\;(O)\;$ com $\;AP\;$ e $\;C\;$ na interseção de $\;(O)\;$ com $\;AQ.\;$
No caso da nossa figura, o problema tem duas soluções.

148. Inscrire dans un cercle un triangle rectangle dont les cotês de l'angle droit ou leurs prolongements passent par deux points donnés P et Q
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

11.2.16

Circunferência por 2 pontos com tangentes iguais tiradas por 2 ponto distintos


Problema:
São dados quatro pontos $\;A,\;B,\;C,\;D.\;$
Construir a circunferência que passa por $\;A,\;B\;$ e cujas tangentes tiradas por $\;C\;$ e por $\;D\;$ têm o mesmo comprimento.

©geometrias. 10 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Este é mais um dos problemas que se resolve, analisando-o como se o tivessemos resolvido. Claro que, como temos dois pontos $\;A, \;B\;$ da circunferência-solução, sabemos que o seu centro $\;O\;$ é um ponto equidistante de $\;A\;$ e de $\;B\;$.
Também sabemos que $\;CH =DG\;$ se H for o ponto de tangência da tangente tirada por $\;C\;$ e $\;G\;$ for o ponto de tangência da tangente à circunferência tirada por $\;D\;$ e sabemos que $\;OG=OH\;$ (raios) e que $\;OG \perp GD\;$ e $\;OH \perp HC.\;$. E, em consequência, serão iguais os triângulos $\;[CHO]\;$ retângulo em $\;H\;$ e $\;[DGO]\;$ retângulo em $\;G\;$. Assim sendo, serão iguais as hipotenusas $\;OC = OD\;$. Ou seja $\;O\;$ é um ponto equidistante dos pontos dados, $\;C\;$ e $\;D\;$, da mediatriz de $\;CD\;$
Deste modo, $\;O\;$ fica determinado como interseção das mediatrizes de $\;AB\;$ e de $\;CD\;$ e a circunferência requerida tem este centro $\;O\;$ e passa por $\;A\;$

147. On donne quatre points A, B, C, D. Construire un cercle passant par A et B et tel que les tangentes issues de C et D soient égales.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947 >

7.2.16

Circunferência tangente a duas retas paralelas e que passa por um ponto da faixa entre elas


Problema:
São dadas duas retas paralelas $\;a, \;b\;$ e um ponto $\;P\;$ da faixa entre elas.
Construir uma circunferência tangente às retas $\;a, \; b\;$ e a passar pelo ponto $\;P.\;$

©geometrias. 7 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor na esquerda baixa da janela de visualização.



Uma circunferência tangente a duas paralelas $\;a, \;b\;$ tem o seu centro numa terceira paralela $\;m\;$ equidistante das duas dadas e raio igual a $\;r\;$ - distância de $\;m\;$ a $\;a .\;$ Se passa por $\;P\;$, o centro da circunferência estará numa circunferência centrada em $\;P\;$ e raio $\;r.\;$ O problema tem duas soluções $\;(O), \;(O')$.
Nas condições do nosso problema há sempre duas soluções. Se $\;P\;$ fosse um ponto de uma das paralelas $\;a\;$ ou $\,b\;$ o problema teria uma só solução e se estivesse fora da faixa entre as paralelas, não haveria circunferência alguma tangente às duas paralelas.

155. Étant donnés deus droîtes parallèles X, Y et un point A situé entre elles, décrire un cercle passant par ce point et tangente aux deux droîtes
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

4.2.16

Circunferência tangente a outra e a uma reta num dado ponto.


Problema:
É dada uma uma reta $\;t\;$ tangente em $\;T\;$ a uma circunferência $\;c\;$ dada. É ainda dado um outro ponto $\;A\;$ dessa tangente $\;t.\;$
Construir uma circunferência tangente à circunferência $\;c\;$ e à reta $\;t \;$ no ponto $\;A.\;$

©geometrias. 3 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor na direita baixa da janela de visuaização.



Na figura correspondente ao problema resolvido. tem-se uma circunferência $\;(O')\;$ em que $\;O'\;$ é o quarto vértice de um trapézio retângulo $\;[OTAO']\;$. Como $\;t\,$ é tangente comum à duas circunferências exteriormente: a $\;c =(O)\;$ em $\;T\;$ e em $\;A\;$. Como o os segmentos das tangentes a uma circunferência tiradas por um ponto são iguais, a tangente exterior a $\;c\;$ tirada pelo ponto $\;M\;$ médio de $\;AT\;$ resolve o problema já que permite determinar o ponto de tangência $\;I\;$ comum às duas circunferências. $\;TI\;$ é perpendicular a $\;OM\;$ e $\;OI\;$ interseta a perpendicular a $\;t\;$ em $\;A\;$ em $\;O'\;$, centro da circunferência que procuramos: $\;MT=MI=MA\;$ e $\; IO'=O'A .\;$

154. On donne un cercle C, une tangente T à ce cercle au point A et sur cette droîte un point A'. Construire un cercle tangent au cercle C, et à la droîte T au point A'.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

3.2.16

Circunferência tangente a três retas sendo duas delas paralelas


Problema:
São dadas três retas $\;r,\;s,\;t\;$ sendo duas delas paralelas $\;r \parallel s\;$
Construir uma circunferência que seja tangente às três retas $\;r, \;s,\;t. \;$

©geometrias. 2 fevereiro 2016, Criado com GeoGebra



Uma circunferência tangente a três retas $\;r, \;s, \;t\;$ tem centro $\;O\,$ equidistante das três $\;d(r,O)= d(s, O) = d(t,O)\;$. Por isso $\;O\;$ é ponto de interseção de bissetriz do ângulo $\;\angle (\widehat{r, \;t})\;$ com bissetriz do ângulo $\;\angle (\widehat{s, \;t}).\;$
O problema tem duas soluções $\; (O)\;$ e $\;(O').\;$

153. On donne trois droîtes X, Y et Z dont les deux prémières sont parallèles. Construire les cerces tangents à ces trois droîtes.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

31.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (2)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos à mesma distância de uma dada reta $\;r.\;$
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 31 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Se $\;A,\;B\;$ estão à mesma distância de $\;r, \;$ $\;AB \parallel r.\;$ O centro da circunferência que passa por $\;A,\;B\;$ é um ponto da mediatriz de $\;AB \;$ que intersecta $\;r\;$ em $\;D.\;$ Como a mediatriz de $\;AB\;$ é perpendicular a $\;AB\;$ também é perpendicular à sua paralela $\;r.\;$ Por isso o ponto $\;D\;$ é o ponto de tangência da circunferência que passa por $\;A, \;B\;$ e é tangente a $\;r.\;$ Assim o centro da circunferência que procuramos é o ponto comum a $\;CD\;$ e a mediatriz de $\;AD\;$ ou de $\;BD\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

30.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (1)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos sobre uma perpendicular a uma reta $\;r\;$ dada e num dos semi-planos determinados por ela.
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 30 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Por serem dados dois pontos da circunferência que se procura, bastará determinar um terceiro ponto da circunferência ou o seu centro $\;F\;$ que é um ponto equidistante dos pontos $\;A\;$ e $\;B\;$ — $( FA = FB )$ — da mediatriz de $\;[AB].$ Para que a circunferência seja tangente a $\;r\;$ é preciso que o seu raio seja igual à distância de $\;F\;$ a $\;r,\;$ ou, o que é o mesmo, que seja igual à distância de $\;r\;$ à mediatriz de $\;[AB]\;$. Esta distância é $\;CD\;$ em que $\;C\;$ é $\;AB.r\;$ e $\;D\;$ é o ponto médio de $\;[AB]\;$. O centro da circunferência é determinado como $\; (A, CD). (B, CD),\;$ por exemplo. Há dois pontos $\;E, \;F\;$ que verificam essas condições. As soluções do problemas serão $\;(E, EA)\;$ e $\;(F, FB) \;$, simétricas relativamente ao espelho $\;AB.\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947