13.6.16

Quadratura de um par de hexágonos regulares




Temos vindo a apresentar construções de régua e compasso para determinar um quadrado de área igual à área de uma dada figura. Em todas elas, há uma preocupação de economia no que ao número de passos respeita. O número de passos de uma construção refere-se ao número de vezes que se recorre à régua ou ao compasso. A identificação de pontos como intersecção de retas com retas, de retas com circunferências, e de circunferências com circunferências não contam como passos da construção. Um dos problemas que nos é apresentado em [3] pede
a construção de um quadrado de área igual à soma das áreas de dois dados hexágonos regulares, com o menor número de passos.
O problema é interessante porque nos pede que estudemos o hexágono e a forma de pensar em determinar uma figura de área igual à soma das áreas de dois hexágonos antes de pensarmos na quadratura propriamente para evitarmos alguns passos da construção. Há vários outros caminhos que podem ser seguidos para resolver o problema. Sabemos determinar os dois quadrados cada um equivalente a um dos hexágonos e obtidos estes, sabemos obter o quadrado somma das áreas, recorrendo ao teorema de Pitágoras e ete seria o caminho óbvio a seguir.
$\fbox{n=0}\;\;\;$ A figura dinâmica abaixo apresenta-nos um hexágono regular $\;ABCDEF\;$ inscrito numa circunferência de centro $\;O\,$ que sabemos ter raio igual ao lado do hexágono regular que aqui designamos por $\;a= AB=BC=CD=DE=EF=FA.\;$
Podem ver-se ainda os diâmetros $\;AD, \;BE, \;CF\;$ que dividem o hexágono em três paralelogramos equiláteros iguais $\;OABC,\;OCDE, \;OEFA, \;$ ou em seis triângulos equiláteros iguais $\;OAB, $ $\;OBC, \;OCD, \;ODE, \;OEF, \;OFA\;$ e de lados iguais ao lado do hexágono ou ao raio da circunferência em que o hexágono se inscreve.

© geometrias.13 junho 2016, Criado com GeoGebra


$\fbox{n=1}$ Tomámos o segmento $\;BB_0\;$ sendo $\;B_0\;$ o ponto médio de $\;OA. \;$ O retângulo de dimensões $\;BB_0 \times OB_0\;$ tem área igual ao triângulo $\;OAB.\;$
Sabemos que $\;OB_0 = \displaystyle \frac{a}{ 2}\;$ e que o quadrado de lado $\;OB=a\;$ é igual à soma dos quadrados de lados $\;OB_0 = \displaystyle \frac{a}{ 2}\;$ e $\;BB_0:\;$ $\;OB^2 =OB_0^2+BB_0^2. \;$
E, por isso podemos dizer que o quadrado de lado $\;BB_0\;$ tem área igual à da figura que se obtém retirando ao quadrado de lado $\;OB = a\;$ o quadrado de lado $\;OB_0:\; \; \; BB_0^2 = a^2 - (\displaystyle \frac{a}{2})^2 = \displaystyle \frac{3}{4} \times a^2, \;$ ou seja, o quadrado de lado $\;BB_0\;$ é, em área, três quartas partes do quadrado de lado $\,a.\;$
A área do retângulo (de diagonal $\;OB\;$) é $\;BB_0 \times OB_0 = k.a \times \frac{a}{2} = \frac{k}{2} a^2, \;$ em que $\;k\;$ é tal que $k^2=\frac{3}{4}.\;$
A área deste retângulo, igual à área do triângulo $\;OAB,\;$ é dada pela parte $\;\displaystyle \frac{k}{2} \;$ do quadrado de lado $\;a\;$ e, em consequência, a área do hexágono regular de lado $\;a\;$ é $\;3k\times a^2.\;$
$\fbox{n=2}$ Como sabemos todos os hexágonos regulares são semelhantes e podemos representar as diferentes classes de hexágonos regulares iguais entre si, por algum hexágono inscrito numa circunferência centrada em $ \;O\;$ que é o centro de um primeiro hexágono regular de lado $\,a\;$ e área $3k\times a^2. \;$ Para representar a classe de hexágonos regulares com um dado lado $\;b\;$ escolhemos o hexágono regular $\;GHIJKL\;$ também centrado em $\;O\;$ e do qual sabemos a área que é $\; 3k.b^2\;$
E também sabemos que se houver um hexágono regular cuja área seja igual à soma das áreas dos hexágonos de lados $\;a\;$ e $\;b :\;\;\; 3k. a^2 + 3k.b^2 \;$ terá de ter um lado $\;c:\;´\;\; 3k.c^2 = 3k.a^2+ 3k.b^2$, ou seja tal que $\; c^2 =a^2 + b^2.\;$
$\fbox{n=3}$ Pelo que vimos, o lado do hexágono regular de lado $\;c\;$ é tal que $\;c^2= a^2+b^2\;$ ou seja é a hipotenusa deum triângulo retângulo de catetos $\;a, \;b.\;$ que desenhámos tirando por $\;G\,$ uma perpendicular a $\;OG\;$ e tomando sobre essa perpendicular $\;M\,$ tal que $\;GM =a.\;$
$\fbox{n=4}$ Qualquer dos hexágonos regulares inscritos na circunferência de centro $\;O\;$ e raio $\;OM\;$ tem área igual à soma das áreas dos hexágonos $\;ABCDEF\;$ e $\;GHIJKL,\;$ já que $\;c^2 = a^2+b^2 \Leftrightarrow 3k.c^2 = 3k.a^2 + 3k. b^2.\;$ O hexágono $\;PQRSTU\;$ está nessas condições.
$\fbox{n=5}$ Isolemos o hexágono regular $\;GHIJKL.\;$ O nosso problema de quadratura de um par de hexágonos regulares dados fica reduzido à quadratura deste hexágono $\;GHIJKL.\;$
$\fbox{n=6}$ Fácil é ver que um retângulo como $\;QSNV\;$ é igual em área ao hexágono $\;PQRSTU\;$. E também já sabemos determinar um quadrado de área igual a um retângulo. Assim: Toma-se um segmento, por exemplo $\;QW\;$ igual à soma das dimensões do retângulo $\;QV+VN\;$ e uma semicircunferência de diâmetro $\;QW.\;$ Qualquer ponto dessa semicircunferência é vértice de um ângulo reto de lados a passar pelos extremos do diâmetro $\;Q, \;W. \;$ Se tomarmos $\;Z\;$ na semicircunferência e na perpendicular a $\;QW\;$ tirada por $\;V\;$, os triângulos retângulos em $\;V,\;$ $\;ZQV\;$ e $\;VWZ, \;$ e $$ \frac{QV}{VZ} = \frac{VZ}{VW}$$ ou, por ser $\;VW=VN,\;$ podemos afirmar que a área do retângulo $\;VQSN\;$ é igual à área do quadrado de lado $\, VZ:\;$ $$ QV \times VN = VZ^2$$
$\fbox{n=7}$ Encontrámos assim o quadrado de área igual à soma das áreas de 2 hexágonos regulares dados: $\;VXYZ\;\;\;\;$


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martin. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

Sem comentários: