Mostrar mensagens com a etiqueta trapézio. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta trapézio. Mostrar todas as mensagens

13.3.18

Dividir a altura de um trapézio em partes cujo produto seja igual ao produto das bases



TEOREMA:

Se uma semicircunferência de diâmetro igual ao lado oblíquo de um trapézio retângulo corta o lado oposto, cada um dos pontos dessa intersecção divide a altura do trapézio retângulo em dois segmentos cujo produto é igual ao produto das bases do trapézio.



F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Théorème. 24. Lorsque la demi-circonférence décrite sur le côté oblique d'un trapèze rectangle coupe le côté opposé, chaque point d'intersection divise la hauteur en deux segments dont le produit égale le produit des bases du trapèze.

$\;\fbox{n=1}:\;$ Apresenta-se um trapézio $\;[ABCD]\;$ retângulo em $\;B,\;C\;$ de bases $\;AB, \;CD\;$ (paralelas) e altura $\;BC\;$

$\;\fbox{n=2}:\;$ No caso do nossa ilustração, esse trapézio é tal que uma das semi-circunferências de diâmetro $\;AD\;$ (lado oblíquo) interseta a altura $\;BC\;$ (que é o lado oposto a $\;AD\;$) em $\;N, \;P,\;$ como se mostra na figura.

O nosso problema consistirá em provar que $$\;\overline{BN}\times \overline{NC}= \overline{AB} \times \overline{CD} = \overline{BP}\times \overline{PC}\;$$ nas condições descritas no enunciado.



13 março 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Ora para ser verdade que $$\;\overline{BN}\times \overline{NC}= \overline{AB} \times \overline{CD}\;$$ teria de ser verdade que $$\; \frac{BN}{AB} = \frac{CD}{NC} \;$$ o que equivale a serem semelhantes os triângulos $\;ABN\;$ e $\;CDN\;$ que são retângulos, o primeiro em $\;B\;$ de catetos $\;BN, \; AB\;$ e o segundo em $\;C \;$ de catetos $\;NC, \;CD.\;$
Como $\; \angle AND = 1\;$ reto, inscrito na semi-circunferência $\;(AND)\;$ de diâmetro $\;AD, \;$ e $$\;\angle BNA + \angle AND + \angle DNC = 2\;\mbox{retos},$$ conclui-se que $$\;\angle BNA + \angle AND = 1\; \mbox{reto}$$ o que nos conduz às igualdades $$\; \angle NAB= \angle DNC \wedge \angle BNA= \angle CDN,\;$$ ou seja, $$\; \Delta ABN \sim \Delta NCD \;$$ e $$\overline{BN} \times \overline{NC} = \overline{AB} \times \overline{CD},\;$$como queríamos provar. □

$\;\fbox{n=4}:\;$ O mesmo raciocínio para o ponto $\;P\;$ concluindo que $\; BP \times PC = AB \times CD .\;$

17.3.16

Construir um trapézio conhecendo comprimentos das bases e amplitudes dos ângulos adjacentes a uma delas.


Problema:
Construir um trapézio $\;[ABCD]\;$ de que conhecemos os comprimentos das suas bases $\;a=AB, \;c=CD\;$ e os ângulos adjacentes a uma das suas bases $\;\beta=A\hat{B} C, \; \alpha= B\hat{A}D.$

De um trapézio $\;[ABCD]\;$ de bases $\;AB, \;CD\;$ e $\; \angle B\hat{A}D = \alpha\;$ qualquer reta que faça um ângulo igual a esse $\;\alpha\;$ com a reta $\;AB\;$ é paralela a $\;AD.\;$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 16 março 2016, Criado com GeoGebra



Para a determinação do vértice $\;C\;$ tomamos um ponto $\;E\;$ sobre $\;AB\;$ tal que seja $\;AE = CD. \;$
Tracemos o segundo lado de um ângulo de vértice em $\;E\;$ e primeiro lado $\;EB\;$. Sabemos que esse segunda lado é paralelo a $\;AD\;$ e, por isso, $\;C\;$ é um ponto desse segundo lado. Por outro lado, sabemos que está sobre o segundo lado do ângulo de vértice $\;B\;$ que faça um ângulo $\;\beta\;$ com o lado $\;BA\;$.
Tod o o problema de construção do trapézio em questão se resume pois a construir o triângulo de base $\;EB=a-c\;$ e ângulos adjacentes $\;\alpha, \; \beta\;$ cujo terceiro vértie é $\;C\;$
O quarto vértice $\;D\;$é a intersecção da paralela a $\;AB\;$ tirada por $\;C\;$ com a paralela a $\; EC\;$ tirada por $\;A.\; \;\;\;\;\;$ □

201. Construire un trapèze connaissant les deux bases et les angles adjacents à l'une de ces bases.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

2.7.14

Resolver um problema de construção usando análise e síntese (5)


Problema:     Construir um trapézio de que se conhecem os quatro lados
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Suponhamos o problema resolvido: Teríamos um trapézio $\;[ABCD]\;$ que tem por lados $\;AB=a, \;BC=b, \; CD=c, \; DA=d, \;$ sendo $\;AB \;$ a base maior e $\;CD\;$ a base menor do trapézio. Tirando por $\;C\;$ uma paralela a $\;DA\;$, ela corta $\;AB\;$ em $\;E.\;$ Do triângulo $\;[BCE]\;$ conhecemos os comprimentos dos seus três lados: $\;EB=AB-AE=a-c, \;BC=b, \; EC=AD=d\;$.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 8}.\;$

© geometrias, 2 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que um triângulo de lados $\;b, \;d, \;|a-c|\;$ é parte do trapézio que pode ser construída e a partir do qual se pode construir um trapézio com os lados dados.
  2. Começamos por tomar um ponto $\;B\;$ qualquer
  3. O ponto $\;C\;$ pode ser um ponto qualquer da circunferência de raio $\;b\;$ e centro em $\;B\;$
  4. Relativamente a esses $\;B\;$ e $\;C\;$, o ponto $\;E\;$ referido na análise do problema é um dos pontos da interseção da circunferência de centro $\;B\;$ e raio igual a $\;|a-c|\;$ (diferença das bases do trapézio) com a circunferência de centro $\;C\;$ e raio $\;d.\;$
  5. Temos um triângulo $\;[BCE]\;$, a partir do qual se pode construir o trapézio.
    O que falta para termos o trapézio que procuramos resume-se a obter os dois vértices do paralelogramo de $\;[AECD]\;$ de que conhecemos $\;CE=d =AD, \;CE \parallel AD, \; AE=c=CD, \;AE \parallel CD.\;$
  6. $\; A \in BE.(B, \;a)\;$
  7. A paralela a $\;CE\;$ tirada por $\;A\;$ interseta a paralela a $\;BE\;$ tirada por $\;C\;$ no ponto $\;D\;$.
  8. E, finalmente, podemos apresentar o polígono $\;[ABCDE]\;$ que é o trapézio requerido. □
A existência de solução do problema está ligada às condições de existência do triângulo $\;[BCE]\;$, a saber
$\;|a-c| < b+d, b<|a-c|+d, d<|a-c|+b \;$ que é o mesmo que $\;|b-d|< |a-c| < b+d . \;$
No caso dos dados originalmente apresentados, consideramos$\;c < a\;$ e portanto $\;|a-c|=a-c\;$, isto é, que $\;a\;$ e $\;c\;$ são respetivamente a base maior e a base menor do trapézio.

14.3.14

Usando lugares geométricos para resolver problemas de construção (9)


Problema: Por dois pontos de uma circunferência tirar duas cordas paralelas de que se conhece a soma dos seus comprimentos.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Dados (a azul): uma circunferência de centro $\;O\;$ e dois pontos $\;A\;B\;$ sobre ela; um segmento $\;s=AC+BD\;$.
2.
O problema pede que determinemos dois pontos $\;C, \;D\;$ da circunferência dada, tais que $\;AC\; \parallel \;BD\;$ e $\;s=AC+BD\;$. $\;ABCD\;$ será um trapézio inscrito na circunferência de centro $\;O\;$ dada.
  • Nas codições do problema, este trapézio é isósceles: $\;AC\; \parallel \;BD\;$ e, em consequência, $\;CD=AB\;$. Os pontos médios $\;M, \; N\;$ das cordas $\;AB\;$ e $\;CD\;$ estão à mesma distância de $\;O\;$. $\;MO = NO\;$. Isto é os pontos médios de $\;AB\;$ e $\;CD\;$ estão na circunferência $\;(O, OM)\;$ (1º lugar geométrico da lista)
  • Como $\;MN\;$ é a mediana $\;\displaystyle \frac{AC+BD}{2}\;$ do trapézio $\;ABCD\;$ , $\;N\;$ estará sobre a circunferência centrada em $\;M\;$ e de raio $\; \displaystyle \frac{s}{2}\;$ (1º lugar geométrico da lista).


© geometrias, 14 de Março de 2014, Criado com GeoGebra


3.
A interseção das circunferências $\;(O, OM)\;$ e $\; \left(M, \displaystyle \frac{s}{2} \right)\;$ (caso existam), serão pontos médios de $\;CD\;$ de acordo com as condições do problema. Conhecido $\;N\;$, como interseção da perpendicular a $\;ON\;$ com a circunferência dada obtêm-se os pontos $\;C\;$ e $\;D\;$
($\;CD\;$ é corda da circunferência dada de centro $\;O\;$ e $\;N\;$ é o ponto médio $\;CD\;$)
No caso da nossa figura, as circunferências intersetam-se em dois pontos $\; N, \;N'\;$ e há por isso dois trapézios que satisfazem o pretendido $\;ACBD\;$ e $\;AC'D'B\;$
Pode fazer variar o tamanho de $\;s\;$ e confirmará que pode haver uma só solução ou nenhuma, que há casos em que o trapézio se reduz a um triânguo ou mesmo só a $\;AB\;$ e em que os segmentos $\;AB\;$ e $\;CD\;$ se intersetam, ...