Mostrar mensagens com a etiqueta Geogebra 3D. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Geogebra 3D. Mostrar todas as mensagens
25.12.16
28.9.16
5.11.15
Não há mais que cinco poliedros regulares
Construíndo, validámos a existência de cinco sólidos de faces planas equiláteras e equiângulas e iguais entre si, a saber: tetraedro, hexaedro ou cubo, ocatedro, dodecaedro e icosaedro. Para além dessas cinco figuras, podemos dizer que não há outras figuras sólidas cujas faces planas sejam equiláteras e equiângulas e iguais entre si?
Nas últimas entradas, temos vindo a seguir as construções do Livro XIII: Os Sólidos "Platónicos* de Os Elementos. As definições de sólidos (Def. 11.1) e ângulos sólidos (Def. 11.11) estão no Livro XI - Estereometria Elementar.
Seguindo (11.11), a existência de um ângulo sólido exige mais de dois ângulos planos intersetando-se num ponto e não pertencendo a um mesmo plano. Em (11.12) diz-se que uma pirâmide é uma figura sólida, contida por planos os quais são construídos a partir de um plano para um ponto fora dele. Em (11.13) escreve-se que um prisma é contido por planos, dois dos quais opostos são iguais e paralelos, sendo os restantes paralelogramos. …
- Com triângulos equiláteros
- Três é o menor número de planos para construir um ângulo sólido e o tetredro é uma pirâmide cujo ângulo sólido é construído por três triângulos equiláteros, iguais entre si, com um vértice comum.
- O ângulo sólido do octaedro é construído por quatro triângulos equiláteros e o ângulo sólido do iscosaedro por cinco triângulos equiláteros, iguais entre si, com um vértice comum.
- O ângulo sólido do icosaedro é construído com cinco triângulos equiláteros, iguais entre si, com um vértice comum.
- E é claro que seis triângulos equiláteros com um vértice comum pois cada um dos ângulos planos de um triângulo equilátero é duas terças partes de um ângulo reto e a soma de seis deles é igual a quatro retos e, por isso, estarão todos num só plano. E também, é assim claro que não pode haver um ângulo sólidos forrado por mais de seis triângulos equiláteros
- Na figura que se segue, pode ver-se que o ângulo sólido de um hexaedro de faces quadradas é forrado por por três ângulos retos planos e não pode haver qualquer ângulo sólido contido por quatro quadrados já que a sua soma em torno de um mesmo vértice seria de quatro retos.
- Finalmente apresenta-se o caso do dodecaedro em que cada ângulo sólido é limitado por três pentágonos regulares. Mas porque cada ângulo plano de um pentágono é um um reto e um quinto de reto e a soma de quatro deles em torno de um ponto comum é maior que quatro retos.
© geometrias. 5 de Novembro de 2015, Criado com GeoGebra
*O mais provável é que os cinco sólidos regulares tenham sido descobertos na escola pitagórica. Mas são denominados por Sólidos Platónicos porque eles aparecem no diálogo Timaeus de Platão. Muitos dos teoremas deste livro, particularmente os últimos dois sólidos, são atribuídos a Teeteto de Atenas.
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
7.7.15
Elementos: Construção de um cubo inscritível numa dada esfera
Proposição 15:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.
Construção:
Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.
Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)
Demonstração:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.
Construção:
- Seja $\;AB\;$ o diâmetro de uma dada esfera (ou seja a esfera gerada pela revolução de um semicírculo em torno do seu diâmetro de comprimento $\;AB\;$)
- Dividimos $\;AB\;$ em dois segmentos $\;AC\;$ e $\;CB\;$ tais que $\;AC=2CB\;$
- Tiremos por $\;C\;$ uma perpendicular a $\;AB\;$ e, no mesmo plano, tomemos $\;D ,\;$ ponto de interseção dessa perpendicular com a semicircunferência de diâmetro $\;AB\;$
- Tracemos $\;CD\;$ e $\;DB.\;$ - $\;A\hat{C}D=D\hat{C}B = 1\;$ reto
- Tomámos depois um ponto $\;E\;$ e, a partir dele, construímos um quadrado $\;EFGH\;$ de lado igual a $\;DB\;$.
- Em seguida, tirámos por $\;E, \;F,\; G,\;H\;$ perpendiculares ao plano do quadrado $\;EFGH\;$ e, sobre cada uma delas, tomámos um ponto de modo a obtermos $\;EK, \;FL,\; GM,\; HN\;$ iguais a um dos segmentos $\;EF, \; FG,\;GH,\;FE.\;$
- Finalmente, desenhámos $\;KL,\;LM,\; MN,\;NK.\;$
Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.
© geometrias. 1 de julho de 2015, Criado com GeoGebra
Demonstração:
-
Tomamos $\;KG\;$ e $\;EG.\;$Por construção $\;KE\;$ é perpendicular ao plano $\;EFG\;$ e é por isso, perpendicular a $\;EG\;$ - $\;K\hat{E}G\;$ é reto - o que quer dizer que a semicircunferência de diâmetro $\;KG\;$ passa por $\;E.\;$
Como $\;GF\;$ faz ângulos retos com cada uma das retas $\;FL\;$ e $\;FE\;$, então $\;GF\;$ também faz ângulos retos com o plano $\;KEF\;$ e, por isso, também é reto o ângulo $\;G\hat{F}K.\;$ E, portanto a semicircunferência de diâmetro $\;KG\;$ também passará por $\;F\;$ na sua rotação em torno de $\;KG.\;$
Iguais raciocínios nos permitem concluir que essa semicircunferência rodando em torno de $\;KG\;$ passará por todos os vértices do cubo construído.
Assim, mantendo fixo $\;KG\;$ a semicircunferência em revolução passa pelas mesmas posições desde que iniciou a rotação, o que quer dizer que o cubo está compreendido numa esfera de diâmetro $\;KG.\;$
Será que está compreendido na esfera dada? -
- Como $\;GF=FE\;$ e $\;G\hat{F}E\;$ é ângulo reto, então $\;GE^2 =FG^2+FE^2 = 2\times EF^2.\;$ Mas como $\;EF=EK\;$ então $\;EG^2=2\times EF2\;$ e como o ângulo $\;G\hat{E}K\;$ é reto, então $\;KG^2= GE^2+EK^2\;$. Podemos concluir que $\;GK^2=2EF^2+EF^2=3EF^2\;$
- Por terem ângulos iguais, cada um a cada um, os triângulos $\;ADB\;$ e $\;BCD\;$, sabemos que $$\frac{AB}{DB}=\frac{DB}{BC} \; \; \; \text{que é o mesmo que} \; \; \; DB^2=AB\times BC$$ e, como $$\;\displaystyle \frac{AB}{BC}= \frac{AB\times AB}{AB\times BC}\;$$ sendo, por construção, $$\;\displaystyle \frac{AB}{BC}=3 \;\; \text{e}\;\; \frac{AB}{BC}=\frac{AB^2}{BD^2} \;\; \text{então} \;\; AB^2=3\times DB^2$$ Na Geometria de Euclides, este resultado aqui apresentado a partir algebricamente já foi demonstrado antes por métodos geométricos.... /ol> Fica assim provado que, por ser $\;EF=DB\;$ e $\;AB^2=3\times DB^2$ podemos concluir que $\;AB^2= GK^2\;$ e $\;AB=GK.$ Ou seja o cubo construído é inscritível numa esfera de diâmetro $\; AB\;$ dado.
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
1.7.15
Livro XIII: Construção de um octaedro inscrito numa esfera dada
Proposição 14:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)
Demonstração:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
- Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera.
- Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=CB\;$
- Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;DB\;$
- Prolongámos $\;CD\;$ e tomámos sobre essa a reta, a partir de $\;C\;$ em sentido oposto ao de $\;D,\;$ um segmento de comprimento igual $\;AB\;$ e uma circunferência com esse segmento para diâmetro.
- No caso da nossa construção, tomámos um ponto $\;E\;$ dessa circunferência e nela inscrevemos um polígono $\;EFGH\;$ tais que $\;EF = EG = FG=GH=DB\;$. Podíamos ter tomado um outro quadrado de lado igual a $\;DB\;$ em qualquer lugar do espaço. As opções tomadas só têm a ver com aspeto e tamanho da nossa construção.
- Sendo $\;K\;$ o centro da circunferência, tirámos uma perpendicular ao plano da circunferência $\;(EFGH)\;$ e sobre ela tomámos $\;L\;$ e $\;M,\;$ um de cada lado do plano de $\;(EFGH)\;$, tais que $\;KL=KM=KE=KF=KG=KH\;$
- Os 6 pontos $\;E,\;F,\;G,\;H,\;L,\;M\;$ serão vértices de um sólido de 8 faces triangulares $ \;LEF,\;LFG,\;LGH, \;LHE,\;MEF, \;MFG, \;MFH, \; MHE,\;$ que duas a duas se intersetam em alguma das 12 arestas $\;EF, \;FG, \;GH, \;HE, LE,\;LF,\;LG,\;LH,\;ME, \;MF,\;MG,\;MH.\;$ Traçamos tais arestas e faces.
© geometrias. 1 de julho de 2015, Criado com GeoGebra
Demonstração:
- Por construção, $\;EFGH\;$ é um quadrado de lado igual a $\;DB.\;$E $\;EK=FK=GK=HK=KL=KM\;$ sendo iguais os ângulos $\;L\hat{K}E = M\hat{K}E = L\hat{K}F =M\hat{k}F = … = \;$1 reto. Por isso, $\;EK^2=LK^2, \; \; EL^2= 2\times EK^2. \;$ Do mesmo modo, $\;EH^2=2 \times EK^2\;$ e, por isso, $\;EL=EH\;$. Pelas mesmas razões, $\;LH = HE.\;$. Assim, podemos concluir que o triângulo $\;LEH\;$ é equilátero.
Podemos concluir que são equiláteros todos os restantes triângulos cujas bases são os lados do quadrado $\;EFGH\;$ e o terceiro vértice opostos de cada base é $\;L\;$ ou $\;M\;$. Isto quer dizer que construímos um sólido cujas faces são triângulos equiláteros iguais, ou seja, é um octaedro o que construímos. - Falta-nos provar que os vértices do octaedro construído são pontos da superfície esférica de diâmetro igual a $\;AB.\;$ Assim provamos a seguir:
- Por construção, $EF=FG=GH=HE=DB$ e, como vimos, os triângulos de bases $\;EFL, \;FGL, \;GHL, \;HEL, \: EFM, \;FGM, \;GHM, \;HEM, \: $ são equiláteros de lados iguais a $\;DB.\;$
- Como $\;LK, \;KM,\;KE\;$ são iguais, a semicircunferência desenhada de diâmetro $\;LM\;$ também passa por $\;E.\;$ E pela mesma razão, o semicírculo rodando em torno de $\;LM\;$ fixo também passa pelos pontos $ \;F, G, H\;$ e o octaedro terá os seus vértices numa esfera de diâmetro $\;LM.\;$
- E dado que $\;LK=KM\;$ e $\;KE\;$ comum nos triângulos $\;LKE\;$ e $\;MKE\;$ ambos retângulos em $\;\hat{K}\;$, $\;LE=EM\;$
- E como, por construção $\;L\hat{E}M\;$ é reto por estar inscrito num semicírculo de diâmetro $\;LM, \;$ então $\;LM^2= 2 \times LE^2\;$
- E como, por construção, o triângulo $\;ADB\;$ é retângulo em $\; \hat{D}\;$ (inscrito no semicírculo) e $\;AD=DB\;$ então $\;AB^2=AD^2+DB^2, \;$ de onde retiramos que $AB^2=2\times DB^2$
- Por ser, como vimos, $\;LE =DB\;$, podemos dizer que $\;AB^2=LM^2= 2 \times LE^2$, de onde se conclui:
$\;AB=LM\;\;$ e $\;\;AB^2 = 2 \times LE^2$
e também ficou provado que o quadrado de lado igual ao diâmetro de uma esfera dada é igual ao quadrado de lado igual à aresta do octaedro nela inscrito. □
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
26.6.15
Livro XIII: Construção de um tetraedro inscrito numa esfera.
Proposição 13:
Construir uma pirâmide regular (ou tetraedro), inscrevê-la numa dada esfera e mostrar que o quadrado do diâmetro da esfera é uma vez e meia o quadrado do lado (aresta) da pirâmide.
Passos da construção:
- Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera (ou igual a ele) No nosso caso, tomámos mesmo um segmento que é o eixo da esfera gerada pelo semicírculo $\;(ADB)\;$
- Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=2.CB\;$ (Prop. 9 Livro VI (9.6))
- Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;AD\;$
- Tomámos um círculo $\;EFG\;$ de raio iguala $\;DC\;$ e tal que $\;HK\;$ é perpendicular a $\; AB \; $ tirada pelo centro $\;O\;$ do semicírculo $\;ADB\;$ e $\;HK= AC\;$ (de um modo mais geral só é preciso que $\;HK\;$ seja perpendicular ao plano do círculo $\;(EFG)\;$
- No caso da nossa construção, tomámos um ponto $\;E\;$ genérico da circunferência $\;(H, \;DC)\;$ que, por isso, pode mover-se sobre ela em que inscrevemos um triângulo equilátero determinámos $\;EFG\;$ tais que $\;EF = EG = FG\;$
- Finalmente, traçamos os 6 segmentos $\;FE, \;EG, \;FG, \;KE, \;KF, \;KG\;$ que são certamente arestas de uma pirâmide triangular cujas faces são os 4 triângulos $\;EFG, \;KEF, \;KEG, \; KFG\;$
© geometrias. 23 de junho de 2015, Criado com GeoGebra
-
Da construção, sabemos que
- sendo $\;AC=2CB \; \text{e}\; AB=AC+CB, \; \text{então}\; AB=3CB\;$
- o ângulo $\;ADB\;$ é um reto por estar inscrito num semicírculo, ou seja, o triângulo $\;ABC\;$ é retângulo em $\;D\;$
- sendo $\;CD\;$ é altura relativa à hipotenusa $\;AB\;$ do triângulo retângulo $\;ADB\;$ de catetos $\;AD\;$ e $\;DB\;$. O triângulo $\;ABC\;$ tem os ângulos iguais cada um a cada um, a cada um dos triângulos em que está dividido por $\;CD,\;$ a saber : $\;ACD,\;DCB \;$.
Por construção $\; \displaystyle \frac{AB}{BC} = 3 \;$ que nos permite dizer que $\; \displaystyle \frac{AB\times BC}{BC\times BC} = \frac{AD^2}{BC^2} =3\;$ ou que $\;AD^2= 3 \times BC^2 .$
(Note que estes resultados aparecem n'Os Elementos demonstrados geometricamente com recurso a figuras e operações como as de remover ou juntar (sem sobreposição) e retirar figuras congruentes ou iguais em área para obter novas figuras. É um bom exercício reconstruir esse processo, especialmente para os que parecem imediatos, vistos algebricamente, como é o último destes.) - A pirâmide triangular construída é regular:
- Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
Pela proposição 12, estudada no artigo anterior, garantimos que o quadrado de lado igual ao de um triângulo equilátero é triplo do quadrado do raio da circunferência em que se inscreve: No nosso caso, podemos escrever que $\;EF^2= 3\times KE^2 = 3 \times CD^2$.
Fica assim claro que, $\;EF^2 = AD^2\;$ por serem ambos iguais a $\;3 \times CD^2\;$ e, finalmente, podemos dizer que $\;EF=AD\;$.
A base $\;EFG\;$ da pirâmide construída é um triângulo equilátero de lado igual a $\;AD\;$ -
Por construção, $\;HK\;$ é tomada sobre a perpendicular ao plano de $\;(EFG)\;$ e, por isso é perpendicular a todas as retas desse plano que incidam em $\;H\;$, ou seja: os triângulos $\;KEH, \; KFH,\; KGH\,$ são triângulos retângulos em $\;H\;$, sendo os seus catetos, por construção, iguais a $\;CD=KE\;$ e a $\;AC\;$
Por isso, $\;KE^2 =KF^2=KG^2 = AC^2+ CD^2= AD^2$. Ou seja, os lados $\;KE,\;KF, \;KG\,$ destes triângulos retângulos são iguais $AD$ e iguais aos $\;EF, \;EG, \;FG\;$, para concluirmos que os triângulos $\;KEF, \;KFG, \;KGE,\; EFG\;$ são triângulos equiláteros de lados iguais a $\;AD\;$
- Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
- Falta agora provar que os vértices da pirâmide construída incidem numa superfície esférica igual à de diâmetro $\;AB\;$.
Por construção $\;HK=AC=2BC.\;$ Tome-se $\;L\;$ colinear com $\;H, \;K\;$ e tal que $\;HL=BC:\;$ Assim $\;KL=AB=AC+BC=3BC.\;$
Assim como $\; \displaystyle \frac{AC}{CD} = \frac{CD}{CB} , \;$ também $\;\displaystyle \frac{KH}{HE} = \frac{HE}{HL},\;$ já que $\;HK=AC, \; HE=CD, \; HL=CB \,$ e $\;KH\times HL=HE^2,\;$ para além de cada um dos ângulos $\;K\hat{H}E, E\hat{H}L\;$ ser reto, ficando garantido que o semicírculo de diâmetro $\;KL\;$ passa por $\;E\;$. Se considerarmos fixado o diâmetro $\;KL,\;$ no movimento volta inteira do semicírculo em torno de $\;KL\;$, o semicírculo passará pelos pontos $\;F,\;G\;$ já que $\;FL\;$ e $\;LG\;$ acompanham o movimento rigidamente e os ângulos em $\;F \;$ e em $\;G\;$ se tornam retos e a pirâmide é compreendida pela esfera dada já que para $\;KL, \;$ o diâmetro da esfera é igual ao diâmetro $\;AB\;$ da esfera dada e $\;KH\;$ foi construído igual a $\;AC \;$ e $\;HL\;$ igual a $\;CB.\;$ - Só nos falta provar que o quadrado do diâmetro da esfera é igual a uma vez e meia o quadrado do lado da pirâmide.
Como $\;AC=2\times CB, \;\;\; AB= 3 \times CB\;$ e $\;\displaystyle \frac{AB}{AC} = \frac{3}{2}\;$ ou $\; AB=1,5 \times AC.\;$
Ao mesmo tempo, $\; \displaystyle \frac{BA}{AC} =\frac{BA^2}{AD^2}\;$. Portanto $$\; \displaystyle \frac{BA^2}{AD^2} = \frac{3}{2}\;$$ ficando assim provado que o quadrado sobre o diâmetro $\;AB\;$ da esfera é uma vez e meia o quadrado sobre a aresta $\;AD.\;$ □
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
Subscrever:
Mensagens (Atom)