20.12.15

Problema que precisa da invariância de ângulos por inversão para ser resolvido.


Construir uma circunferência que passe por dois pontos $\;A, \; B\;$ dados e corte uma reta - $\;r\;$ - dada segundo um dado ângulo $\; \alpha .$

O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Há uma infinidade de circunferências que passsam por $\;A\;$ e $\;B\;$. Precisamos de determinar alguma dessas que cortem $\;r\;$ segundo o ângulo $\;\alpha \;$.

© 20 dezembro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ no seletor na direita alta da figura, acompanha passo a passo a resolução do problema. Também pode fazer variar a amplitude do ângulo dado deslocando o ponto visível a verde, como pode fazer variar $\;r, \;A, \;B\;$ com consequências que vão até poder ver em que condições há uma ou nenhuma solução para o problema.… Depois de qualquer alteração, pode usar o botão (direita altíssima) para reiniciar.

$\;\fbox{n=1}\;\;\;\;$ A inversão relativa à circunferência de centro $\;A\;$ e raio $\;AB\;$
$\;\fbox{n=2}\;\;\;\;$ transforma a reta $\;r\;$ numa circunferência $\;r'\;$
$\;\fbox{n=3}\;\;\;\;$ que passa por $\;A,\;$ centro da inversão aplicada a $\;r\;$.
Como a inversão preserva os ângulos, o problema reduz-se a determinar uma recta que passe por $\;B\;$ e faça um ângulo $\;\alpha\;$ com a circunferência $\,r'\;$.
As retas que fazem ângulos $\;\alpha\;$ determinam-se facilmente: Toma-se um ponto $\;I\;$ genérico de $\;r'\;$ e a sua tangente nesse ponto
$\;\fbox{n=4}\;\;\;\;;$ A reta que faz um ângulo $\; \alpha \;$ com cada tangente é uma das retas que procuramos e que no seu conjunto determinam (envolvem) uma circunferência concêntrica com $\;r'\;$
$\;\fbox{n=5}\;\;\;\;$ lugar geométrico dos pontos médios das cordas determinadas pelas retas que que fazem ângulos $\; \alpha\;$ com as tangentes em qualquer dos seus extremos.
De entre todas essas retas, interessam-nos aquelas que passam por $\;B\;$ que são duas delas: as tangentes $\;t_1, \; t_2\;$ à circunferência de centro $\;O \;$ e raio $\;OM\;$ tiradas por $\;B\;$
$\;\fbox{n=6}\;\;\;\;$ Se aplicarmos a estas retas $\;t_1, \; t_2\;$ a inversão de centro $\;A\;$ e raio $\;AB\;$ as suas transformadas são, respetivamente, as circunferências $ \;c_1, \; c_2\;$ que passam por $\;A\;$, centro da inversão, e também por $\;B\;$ por este ser um ponto da circunferência de inversão (invariante por essa inversão)
$\;\fbox{n=7}\;\;\;\;\;$ A figura final
$\;\fbox{n=8}\;\;\;\;$ só serve para mostrar os dados e as soluções do problema sem mais.

* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
200. Construire un cercle passant par deux points donnés et coupant une droite donnée sous un angle donné $\;\alpha$.

15.12.15

Dobras de um canto com uma dada área são um problema?


Imagine que o primeiro quadrante do plano $\;Oxy\;$ é um folha de papel gigante.Fixe uma constante $\;k\;$ e imagine que o canto em $\;(0,0)\;$ é dobrado para um ponto $\;P \;$ da folha de tal modo que o triângulo da dobragem tem área $\;k.\;$ Descreva o conjunto dos pontos que podem ocorrer como $\;P.\;$

Clique no botão a que chamámos "auxiliares"
Chamamos $\;Q\;$ e $\;R\;$ aos dois outros vértices do triângulo da dobragem que leva $\;O\;$ para $\;P\;$. E designamos por $\;S\;$ o ponto de interseção de $\;OP\;$ com $\;RQ\;$. Como os ângulos em $\;O\;$ e em $\;P\;$ são iguais e retos, $\;RQ\;$ é o diâmetro da circunferência que passa por $\;Q,\;P,\;R,\;O.\;$ $P$ obtém-se como imagem de $O$ por uma meia volta em torno de $\,QR,\;$ ou dito de outro modo, para cada $\;Q\;$ e cada $\;R\;$, há um $\;P\;$ imagem $\;O\;$ por simetria de eixo $\;QR.\;$ $\;OQ=QP, \;OS =SP, \; OR=RP.\;$





© geometrias, 8 dezembro 2015, Criado com GeoGebra


A área do triângulo $PQR$ é dada por $\; \displaystyle QR \times \frac{OP}{2}\;$ ou por $\; \displaystyle \frac{QP\times PR}{2}$.
Designemos por $\;(x, y)\;$ as coordenadas cartesianas de $\;P:\;\; x=OQ, \; y=OR\;$ e por $\;(\rho, \; \theta\;)\;$ as coordenadas polares de $\;P:\; \; \rho= OP =2\times SP, \; \theta=\angle Q\hat{O}P.\;$
No caso da nossa construção, atribuímos o valor $\;3\;$ a $\;k\;$ e a condição do problema que $\;P\;$ deve satisfazer é, pelo que vimos, $\;x\times y = 6.\;$
Como $\;OS \perp QR \;$, do triângulo $\;OSQ\;$ retângulo em $\;S\;$, tiramos $\;\displaystyle \frac{OS}{OQ} = {\rm cos}\; \theta \;$ ou $\; \displaystyle \frac{\rho}{2}=x.{\rm cos}\; \theta. \;$
Também o triângulo $\;RSO\;$ é retângulo em $\;S\;$ e $\;R\hat{O}S = \displaystyle {\pi \over 2} - \theta\;$ e $\; \displaystyle \frac{\rho}{2}=y.{\rm cos}\; ({\pi \over 2}-\theta)\;$ ou $ \displaystyle\frac{\rho}{2}=y.{\rm sen}\; \theta . \;$
De $\;\rho = 2x. {\rm cos} \theta\;$ e $\;\rho=2.{\rm sen} \theta\;$ podemos concluir que $\;\rho ^2 = 4xy.{\rm sen}(\theta).{\rm cos}\; \theta\;$ ou, por ser $\; 2{\rm sen}(\theta).{\rm cos}(\theta) ={\rm sen}(2\theta),\;$ e $\;xy=2k\;$ (no nosso caso $\;6\;$), podemos concluir que o lugar geométrico dos pontos $\;P (\rho, \; \theta)\;$ tais que os triângulos $\;QPR\;$ de dobragem têm área $\;k\;$ constante satisfazem a seguinte equação $$\rho ^2 = 4k. {\rm sen}(2\theta)$$ que é a equação de uma curva chamada lemniscata (meia lemniscata no nosso caso por serem $\;x\geq 0 \wedge y\geq 0 \;$ restrições consideradas no enunciado do problema.)

Pode ver o lugar geométrico -- meia lemniscata -- clicando no botão "lugar geométrico dos P" ao fundo direito na figura. E pode deslocar $\;Q\;$ para ver o ponto $\;P\;$ descrever a curva desenhada a vermelho. É claro que\, considerado que $\;P(x, y):\; xy=2k\;$ e deixando livre $\;Q(x, 0)\;$ o ponto $\;R (0, y)\;$ é dele dependente: $\;y=\displaystyle \frac{2k}{x}\;$


$^1\;$7. Don't Cut Corners — Fold them Suppose the first quadrant of the x-y plane is a giant sheet of paper. Fix a constant K and imagne that the corner at (0;0) is folded over onto a point P on the sheet in such a way that the triangle folded over has area k. Describe the set of ponts that can occur as P.
Konhauser, J.D.E; Velleman, Dan; Wagon, Stan. Which way did the bicycle go? . and other intriguing mathematical mysteries. Dolciani mathemetical Expositions - o 18, Mathematical Association of America: 1996.

28.11.15

Situar um triângulo dado de modo a que cada um de 3 pontos dados estejam sobre cada um dos seus lados.


ProbLema XXVI dos Principia

ProbLema XXVI dos PRINCIPIOS1 de I. Newton

Problema:
Conhecemos os os ângulos $\; \alpha, \; \beta, \; \gamma\;$ e o comprimento do lado $\;AB\;$ de um triângulo $\;ABC.\;$ Dados três pontos $\;D,\;E, \;F\;$ não colineares, situar o triângulo $\;ABC\;$ de tal modo que $\;D\;$ incida sobre a reta $\;BA\;$, $\;E\;$ sobre $\; AC\;$ e $\;F\;$ sobre $\; CB.\; \;^1\;$

$\fbox{n=1}\;$ Do triângulo $\;ABC\;$ que vamos construir, os dados estão lançados no topo esquerdo do janela de visuaização, a saber: comprimento $\;AB\;$ e os ângulos $\; \alpha, \; \beta, \; \gamma\;$, sendo igual a quatro retos a soma das amplitudes destes últimos — $\alpha + \beta + \gamma = 4 \;$ retos. Na nossa figura pode variar as amplitudes usando os pontos verde e vermelho. Claro que se pretende que este triângulo seja construído numa posição tal que em cada uma das suas três retas (lados) incida um dos pontos $\;D, \;E, \;F\;$ a azul na figura, onde também se apresentam os três segmentos que os unem dois a dois.
Para acompanhar os passos da construção, faz-se variar de 1 a 8 o valor de $\;n\;$ no cursor presente na janela da construção dinâmica.

Para que $\;D\;$ incida sobre $\;AB\;$ e $B\hat{A}C= \alpha = D\hat{A}E, \;$, basta que A seja um ponto do arco capaz de um ângulo de amplitude $\;\alpha\;$ oposto a uma corda $\;DE\;$ de uma circunferência a passar por $\;D, \;E.\;$ Pelas mesmas razões $\;B\;$ terá de estar no arco capaz de de um ângulo $\; D\hat{B}F = \beta \;$ de uma circunferência a passar por $\; D, \;F\;$ e $\;C\;$ terá de estar num arco capaz do ângulo $\;\gamma=F\hat{C}E\;$ numa circunferência a passar por $\;E, \;F.\;$






24 novembro 2015, Criado com GeoGebra
>Nota: Não pretendemos fazer demonstração, mas tão só os passos da construção<


$\fbox{n=2, 3, 4}\;$ Determinam-se os arcos $\;DAE, \;DBF, \;FCE \;$ capazes dos ângulos $\;\alpha, \;\beta, \;\gamma\;$ das circunferência de centros $\;P, \;Q, \; O\;$ que têm um ponto $\;G\;$ comum.

$\fbox{n=5}\;$ Para determinar $\;A\;$ sobre $\;(P, PG)\;$ colinear com $\;D\;$ da mesma circunferência e com $\;B\;$ da circunferência $\;(Q, QG)\;$, determina-se $\;GA\;$ tal que $$\frac{GA}{AB}=\frac{GP}{PQ}$$ da semelhança dos triângulo $\;GPQ\;$ e $\;GAB\;$ (por ser $\;G\hat{P}Q= G\hat{A}D, \; \;G\hat{Q}P= G\hat{B}D \;$)

$\fbox{n=6}\;$ Conhecido $\;GA\;$, determina-se $\;A\;$ sobre o arco $\;EGD\;$ de $\;(P, PG)\;$

$\fbox{n=7}\;$ As retas $\;DA\;$ e $\;EA\;$ definem dois ângulo de amplitude $\;\alpha \;$ verticalmente opostos e servirão definir o triângulo $\;ABC\;$ que procuramos:

$\fbox{n=8}\;$ $\;B\;$ estará sobre a reta $\;AD\;$ e sobre o arco $\;DGF\;$ de $\;(Q, QG)\;$ e capaz de ângulos de amplitude $\;\beta. \;$ Finalmente $\;C\;$ fica determinado como interseção da reta $\;EA\;$ com a reta $\;BF\;$ sobre o arco capaz $\;FCE\;$ de ângulos de amplitude $\;\gamma\;$.


$^1\;$Lemma XXVI. To place the three angles of a triangle, given both in kind and magnitude, in respect of as many right lines given by position, provided they are not all parallel among themselves in such manner that de several angles may touch the several lines.
Sir Isaac Newton, The Mathematical Principles of Natural Philosophy. (Andrew Motte) pp.91-92 Vol.I. London: 1803.

5.11.15

Não há mais que cinco poliedros regulares



Construíndo, validámos a existência de cinco sólidos de faces planas equiláteras e equiângulas e iguais entre si, a saber: tetraedro, hexaedro ou cubo, ocatedro, dodecaedro e icosaedro. Para além dessas cinco figuras, podemos dizer que não há outras figuras sólidas cujas faces planas sejam equiláteras e equiângulas e iguais entre si?

Nas últimas entradas, temos vindo a seguir as construções do Livro XIII: Os Sólidos "Platónicos* de Os Elementos. As definições de sólidos (Def. 11.1) e ângulos sólidos (Def. 11.11) estão no Livro XI - Estereometria Elementar.
Seguindo (11.11), a existência de um ângulo sólido exige mais de dois ângulos planos intersetando-se num ponto e não pertencendo a um mesmo plano. Em (11.12) diz-se que uma pirâmide é uma figura sólida, contida por planos os quais são construídos a partir de um plano para um ponto fora dele. Em (11.13) escreve-se que um prisma é contido por planos, dois dos quais opostos são iguais e paralelos, sendo os restantes paralelogramos. …
  1. Com triângulos equiláteros
    1. Três é o menor número de planos para construir um ângulo sólido e o tetredro é uma pirâmide cujo ângulo sólido é construído por três triângulos equiláteros, iguais entre si, com um vértice comum.
    2. O ângulo sólido do octaedro é construído por quatro triângulos equiláteros e o ângulo sólido do iscosaedro por cinco triângulos equiláteros, iguais entre si, com um vértice comum.
    3. O ângulo sólido do icosaedro é construído com cinco triângulos equiláteros, iguais entre si, com um vértice comum.




    4. E é claro que seis triângulos equiláteros com um vértice comum pois cada um dos ângulos planos de um triângulo equilátero é duas terças partes de um ângulo reto e a soma de seis deles é igual a quatro retos e, por isso, estarão todos num só plano. E também, é assim claro que não pode haver um ângulo sólidos forrado por mais de seis triângulos equiláteros
  2. Na figura que se segue, pode ver-se que o ângulo sólido de um hexaedro de faces quadradas é forrado por por três ângulos retos planos e não pode haver qualquer ângulo sólido contido por quatro quadrados já que a sua soma em torno de um mesmo vértice seria de quatro retos.

  3. Finalmente apresenta-se o caso do dodecaedro em que cada ângulo sólido é limitado por três pentágonos regulares. Mas porque cada ângulo plano de um pentágono é um um reto e um quinto de reto e a soma de quatro deles em torno de um ponto comum é maior que quatro retos.


    © geometrias. 5 de Novembro de 2015, Criado com GeoGebra

Fica assim claro que não há mais que cinco sólidos platónicos, isto é, não há mais que cinco poliedros cujas faces são polígonos equiláteros e equiângulos.

*O mais provável é que os cinco sólidos regulares tenham sido descobertos na escola pitagórica. Mas são denominados por Sólidos Platónicos porque eles aparecem no diálogo Timaeus de Platão. Muitos dos teoremas deste livro, particularmente os últimos dois sólidos, são atribuídos a Teeteto de Atenas.
  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

16.10.15

Elementos: Comparações das arestas dos sólidos platónicos inscritos numa mesma esfera


Proposição 18:
Para definir os lados das cinco figuras e compará-los uns com os outros.


Consideremos a esfera dada definida pela semi-circunferência de diâmetro $\;AB\;$ em que se inscrevem um tetraedro, um octaedro, um hexaedro, um dodecaedro e um iscosaedro. As construções dessas figuras sólidas foram sendo apresentadas em recentes páginas deste "lugar geométrico".


© geometrias. 14 de Outubro de 2015, Criado com GeoGebra



  1. Tomemos um ponto $\;C\;$ de $\;AB\;$ tal que $\;AC=CB\;$ e um ponto $\;E\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;C.\;$ Sabemos que $\;AC=CB\;$ ou $\;AB=2.BC$ e por serem iguais os catetos $\;AE, \;EB\;$ do triângulo retângulo de hipotenusa $\;AB\;$ $$\;AB^2=2.BE^2.\;$$ Como tínhamos visto que o quadrado sobre o diâmetro da esfera é o dobro do quadrado da aresta do octaedro nela inscrito, é certo que $\;BE\;$ é igual ao lado (aresta) do octaedro inscrito na esfera de diâmetro $\;AB.\;$
  2. Tomando um ponto $\;D\;$ de $\;AB\;$ tal que $\;AD=2.DC\;$ e um ponto $\;F\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;D.\;$
    1. Sabemos que $\;AD=2.DB\;$ é o mesmo que $\;AB=3.DB\;$ ou $\;AB= \displaystyle \frac{3}{2} AD.\;$ E, por serem equiangulares os triângulos $\;BAF,\;$ retângulo em $\;F\;$ e $\;DAF,\;$ retângulo em $\;D,\;$ podemos escrever $$\frac{BA}{AF}=\frac{FA}{AD}= \frac{BF}{FD},$$ de onde se retira que $\;BA.AD=AF^2 .\;$ Como $\;\displaystyle \frac{BA}{AD}= \frac{AB.AB}{AD.AB}=\frac{AB^2}{AF^2} ,\;$ temos $$AB^2 = \frac{3}{2} . AF^2$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é uma vez e meia o quadrado do lado (aresta) do tetraedro nela inscrito, é certo que $\;AF\;$ é igual ao lado (aresta) do tetraedro inscrito numa esfera de diâmetro $\;AB\;$
    2. Sendo $\; AB=3.DB\;$ e, porque os triângulos $\;BAF,\;$ retângulo em $\;F,\;$ e $\;FBD, \;$ retângulo em $\;D,\;$ são equiangulares, podemos escrever $$\frac{AB}{BF}=\frac{FA}{FD}= \frac{BF}{BD},$$ de onde se retira que $\;AB.BD=BF^2.\;$ Como $\;\displaystyle \frac{AB}{BD}= \frac{AB.AB}{AB.BD}=\frac{AB^2}{BF^2}\;$ temos $$AB^2 =3BF^2.$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é o triplo do quadrado da aresta do cubo nela inscrita, é certo que $\;BF\;$ é igual ao lado (aresta) do cubo inscrito na esfera de diâmetro $\;AB\;$

    1. Tomando um ponto $\;G\;$ na perpendicular a $\;AB\;$ tirada por $\;A\;$ e de tal modo que $\;AG=AB\;$ e consideremos os pontos $\;H\;$ de interseção da semi-circunferênca com $\;CG\;$ e $\;K\;$ de $\;AB\;$ e pé da perpendicular a $\;AB\;$ tirada por $\;H.\;$ Como $\;GA=AB=2.AC\;$ e por $\;GA \parallel HK\;$ podemos escrever $\;\displaystyle \frac{GA}{AC} =\frac{HK}{KC}\;$ e, por isso, $\;HK=2.KC,\;$ de onde $\;HK^2 = 4KC^2.\;$ Por ser retângulo em $\;K\;$ o triângulo $\;CHK,\;$ é $\;HC^2=CK^2+KH^2\;$ e, como $\;HC=CB\;$, podemos concluir que $\;BC^2 =4KC^2+Kc^2=5KC^2.\;$
      Sabendo que $\;AB=2BC\;$ e $\;AD=2DB, \;$ ao tirarmos $\;AD\;$ a $\;AB\;$ ficamos com $\;DB\;$ e tirando $\;DB\;$ a $\;BC\;$ ficamos com $\;DC,\;$ podemos dizer que $\;DB=2CD\;$ ou seja $\;BC= BD+DC= 2DC+DC=3CD\;$ e $BC^2=9CD^2.\;$ Assim por ser $\;BC^2 = 5CK^2=9CD^2, \;$ terá de ser $\;CK > CD .\;$
      Tomando agora os pontos $\;L,\;$ sobre $\;AB\;$ tal que $\;KC=CL,\;$ e $\;M\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;L\;$ com a semi-circunferência, sendo $\;KL = 2CK,\; AB=2BC, BC^2=5CK^2\;$, é $\;AB^2=5KL^2.\;$
      Como antes tínhamos visto que o diâmetro da esfera é cinco vezes o raio do círculo a partir do qual se constrói o icosaedro nela inscrito, é certo que $\;KL\;$ é o raio do círculo a partir do qual se constrói o icosaedro inscrito numa esfera de diâmetro $\;AB\;$. $\;KL\;$ é o lado do hexágono inscrito nesse círculo de partida e o lado do pentágono inscrito nesse mesmo círculo é igual à aresta do icosaedro. Da construção do icosaedro, lembramos que o diâmetro $\;AB\;$ da esfera era composto por um lado do hexágono inscrito na circunferência de raio $\;KL\;$ acrescentado de dois lados de decágono inscrito em circunferências de raio $\;KL, \;$ o que nos alerta para que $\;AK=LB\;$ é o lado do decágono inscrito na circunferência de raio $\;KL\;$. Como já tínhamos visto $\;HK=2KC,\; KL=2KC, \;KC=CL\;$ e, em consequência, $\;LM=KC=KL\;$. Temso assim um triângulo $\;BML,\;$ retângulo em $\;L\;$ sendo os catetos $\;BL,\;LM\;$ respetivamente iguais ao lado de um decágono e ao lado de um hexágono ambos inscritos numa circunferência de raio $\;KL\;$. Por isso, a sua hipotenusa $\;BM\;$ é o lado do pentágono regular inscrito no mesmo círculo de raio $\;KL,\;$ sendo assim certo que
      $\;BM\;$ é igual ao lado (aresta) do icosaedro inscritível numa esfera de diâmetro $\;AB.\;$
    2. Vimos, na entrada relativa a essa construção, que a aresta do dodecaedro inscritível numa esfera de diâmetro $\;AB\;$ é a parte maior de uma divisão em média e extrema razão da aresta do cubo inscritível na mesma esfera. Sendo $\;FB\;$ igual a cada lado dos quadrados que formam o cubo inscrito na esfera de diâmetro $\;AB,\;$ determinamos o ponto $\;N\;$ que divide o segmento $\;FB\;$ em duas partes $\;FN, \;NB\;$, sendo $\;BN > NF\;$ e $\;\displaystyle \frac{FB}{BN}=\frac{BN}{NF} \;$ equivalente a $\;NB^2=NF.FB\;$ e é certo dizer que $\;NB\;$ é igual à aresta do dodecaedro regular inscritível numa esfera de diâmetro $\;AB.\;$
Concluindo:
  • Sabemos que $$AB^2=\frac{3}{2}AF^2 =2BE^2=3BF^2,$$ de onde se pode retirar que $$AF^2= \frac{4}{3}BE^2=2BF^2$$ que pode ler-se:
    as razões entre os quadrados das arestas dos tetraedro, octaedro e hexaedro (cubo) regulares inscritos numa mesma esfera são racionais $\;\frac{4}{3}, \frac{3}{2}, 2, 3, ...$.
  • Já o mesmo não se pode dizer das razões entre os quadrados das arestas do icosaedro e do dodecaedro inscritíveis numa mesma esfera ou entre quadrados de qualquer destas com quadrados de cada aresta do tetraedro, octaedro ou cubo, que são sempre irracionais.
Pode ter interesse ainda comparar as arestas do icosaedro e do dodecaedro (ambos inscritos na mesma esfera): A aresta do icosaedro ($\;MB\;$) é maior que a aresta do dodecaedro ($\;NB\;$) (inscritos numa esfera de diâmetro $\;AB\;$ qualquer).

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

22.9.15

Elementos: Construção de dodecaedro inscritível numa dada esfera.


Proposição 17:
Construir um dodecaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;A_0B_0\;$ a azul na figura em que também tomamos um ponto $\;C_0\;$ do diâmetro tal que $\;A_0C_0+C_0B_0=A_0B_0\;$ e $\;A_0C_0=2\times B_0C_0\;$ e um ponto $\;D_0\;$ da semicircunferência $\;A_0D_0B_0\;$ tal que $\; A_0\hat{C_0}D_0\;$ seja reto. Ficam traçados também $\;C_0D_0\;$ a azul, e $\;D_0B_0,\;$ a vermelho. Passos da construção:
  1. Como já vimos antes (XIII.15), um cubo de aresta igual a $\;D_0B_0\;$ inscreve-se numa esfera de diâmetro $\;A_0B_0.\;$
    Começamos por desenhar duas faces consecutivas do cubo encapsulável nessa esfera, ou seja, dois quadrados (de lados iguais a $\;D_0B_0\;$)a saber: $\; ABCD \;$ e $\;BEFC\;$.
    Desses dois quadrados determinamos os pontos médios $\;G, \; H,\;K, \; L, \; M, \;N,\;O, \;$ dos seus lados $\;AB, \;BC, \;CD,\;EF,\; EB, \;CF,\;$ respetivamente.
    A seguir traçámos os pares de segmentos $\;HM, \;NO, \; \;HL, \;GK,\;$ unindo os pontos médios de lados opostos de cada um desses quadrados que definem os pontos $\;P\;$ e $\;Q.\;$
    Determina-se sobre $\;NP\;$ o ponto $\;R\;$ que o divide em média e extrema razão sendo $\;RP > NR. \;$ E dividimos, igualmente em média e extrema razão, $\;PO\;$ por $\;S\;$ e $\;HQ\;$ por $\;T,\;$ sendo $\;SP > OP\;$ e $\;TQ > HT.\;$
    Tiramos por $\;R\;$ e $\;S\;$ perpendiculares ao plano $\;CBE\;$ e de cada uma delas tomemos um segmento de comprimento $\;PR=PS, \;$ e para o exterior do cubo, $\;RU\;$ e $\;SV.\;$ Determinámos, do mesmo modo, $\;W\;$ sobre a perpendicular tirada por $\;T\;$ ao plano $\;ABC,\;$ sendo $\;TW=QT=PR=PS\;$


    © geometrias. 20 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Os pontos $\;U,\;B,\;W,\;C, \:;V\;$ são vértices de um pentágono equilátero e equiângulo.
    1. Provemos que $\;UB=BW=WC=CV=VU:\;$
      Como $\;NP\;$ está dividido em média e extrema razão por $\;R\;$ com $\;PR > RN,\; \;\; PR^2=PN \times NR\;$ e dado que $\;PR=PN-NR \;$ e $\;PR^2=(PN-NR)^2= PN^2+NR^2 - 2\times PN\times NR= PN^2+NR^2 - 2\times PR^2=\;$ ou seja $$\;PN^2+RN^2=3PR^2\;\; \;\;\; \mbox{ euclideanamente provado em Elementos:}\;\; XIII.4 )$$ Por ser $\;PN=NB\;$ e $\;PR=RU\;$, podemos pois afirmar que $\;NB^2+RN^2=3RU^2.\;$ E por ser retângulo em $\;N\;$ o triângulo $\;BRN\;$, podemos escrever (I.47) $\;BR^2=BN^2+NR^2.\;$ E, assim se vê que $\;BR^2 = RU^2\;$ e $\;BR^2 + RU^2= 4RU^2.\;$ E como o triângulo $\;BUR\;$ é retângulo em $\;R,\;$ (por I.47) $\;BU^2=BR^2 + RU^2\;$ e, em consequência, $\;BU^2=4RU^2, \;$ que implica $\;BU=2UR.\;$
      Também sabemos que $\;SRVU\;$ é um paralelogramo retângulo em que $\;SR=UV(=2PR=2RU=2SV=2TW...)\;$ Fica assim demonstrado que $\;BU=UV.\;$
      Do mesmo modo se demonstra que cada um dos $\;BW, \; WC,\;CV\;$ é igual a $\;BU\;$ e $\;VU.\;$
    2. $\;U,\;B,\;W,\;C, \;V\;$ são complanares?
      O ponto $\;X\;$ no exterior do cubo original e sobre uma paralela a $\;RU\;$ e $\;SV\;$ tirada por $\;P\;$ e tal que $\;PX=RU\;$ é um ponto de $\;UV\;$ e tomemos os segmentos $\;XH\;$e $\;HW.\;$ Se provarmos que $\;X, \; H, \;W\;$ são colineares fica demonstrado que os pontos do pentágono $\;UBWCV\;$ estão todos num só plano. Assim:
      Por construção, $\;T\;$ divide $\;HQ\;$ em média e extrema razão sendo $\;QT >TH\;$ ou seja $$\frac{HQ}{QT}=\frac{QT}{TH}$$ E, como $\;HQ=HP\;$ e $\;QT=TW=PX\;$, podemos escrever que $$\frac{HP}{PX}=\frac{WT}{TH} \;\;\;\;\;\;\;\;\;\; (*)$$ Como $\;HP \parallel TW\;$, fazem cada um deles ângulos retos com o plano $\;ABC\;$. E pelas mesmas razões, por ser $\;TH \parallel PX\;$ fazem ambos ângulos retos com o plano $\;BEF\;$ (XI.6)
      E podemos concluir que os triângulos $\;XPH\;$ e $\;HTW\;$ são semelhantes já que $\;\angle X\hat{P}H = \angle H\hat{T}W = 1\;$ reto e os seus lados serem diretamente proporcionais (*) $$\frac{HP}{WT}=\frac{PX}{TH}$$ Sendo $\;HP \parallel TW\; \wedge \;TH \parallel PX\; \wedge \;XPH\; \sim\;HTW\;$ então $\;HX \parallel WH\;$ (VI.32), ou seja são uma única já que são paralelas com um ponto $\;H\;$ comum.
      Por (XI.1), sendo $\;WH\;$ e $\;HP\;$ dois segmentos de uma mesma reta, todos os seus pontos estão num mesmo plano como acontecerá com todos os pontos das retas que passam por $\;W\;$ e um outro ponto de $\;BC.\;$
    3. Já sabemos que o pentágono é uma figura plana e é equilátera. Será equiângula? A proposição (XIII.7) de "Os Elementos" diz-nos que se três ângulos, consecutivos ou não, de um pentágono equilátero são iguais então o pentágono é equiângulo.
      Como sabemos $\;R\;$ divide $\;NP\;$ em média e extrema razão sendo $\;PR > RN\;$ e, por isso, temos $$\frac{NP}{PR}= \frac{PR}{RN}$$ E, como $\;PR=PS\;$ e $\;NS=NP+PS,\;$ por (XIII.5), $\;P\;$ divide $\;NS\;$ em média e extrema razão sendo $\;NP>PS\;$ $$\frac{SN}{NP}=\frac{NP}{PS}$$ Em consequência, por (XIII.4), $\;NS^2+SP^2 = 3.NP^2.\;$ Por ser $\;NP=NB\;$ e $\;SP=SV,\;$ podemos afirmar que $\;VS^2 + SN^2= 3.NB^2, \;$ de onde resulta $\;VS^2 + SN^2 + NB^2= 4.NB^2. \;\;\; (**)$
      Como $\;SNB\;$ é um triângulo retângulo em $\;\angle \hat{N}, \;$ por (I.47), $\;SN^2+NB^2 =SB^2\;$ que com $\;(**),\;$ nos permite afirmar que $\; VS^2+SB^2 = 4.NB^2\;$ ou $\;BV^2=4.NB^2,\;\; (***)$ já que $\;BSV\;$ é retângulo em $\;S\;$ e, por (I.47), $\;VS^2+SB^2 = VB^2.\;$
      Por construção, sabíamos que $\;BC=2NB$ e ficámos agora a saber com $\;(***)\;$ que também é $\;BV=2NB, \;$ de que se tira $\;VB=BC.\;$. Como o pentágono é equilátero já sabemos que $\;BU=BW,\; UV=WC\;$ que com $\;VB=BC\;$ garantem a igualdade dos triângulos $\;BUV\;$ e $\;BWC\;$ e, em consequência, as igualdades dos ângulos $\;B\hat{U}V,\; \;B\hat{W}C\;$ opostos a $\;BV\;$ e $\;BC\;$ e dos ângulos $\;B\hat{V}U,\; B\hat{C}W\;$ opostos a $\;BU\;$ e $\;BW\;$ respetivamente. Já temos três ângulos do pentágono iguais entre si e por (XIII.7) o pentágono é equiângulo
    4. O pentágono construído pelo processo acima explicitado é uma figura plana equilátera e equiângula do qual $\;BC\;$ é uma diagonal. $\;BC\;$ é uma das doze arestas do cubo inscrito numa esfera de diâmetro $\;A_0B_0 .\;$ Se fizermos a mesma construção sobre cada uma das doze arestas do cubo, teremos construído uma qualquer figura sólida, contida por doze pentágonos equiláteros e equiângulos, a que chamamos dodecaedro
  2. Falta provar que esta figura sólida está encapsulada na mesma esfera (de diâmetro $\;A_0B_0\;$) em que está inscrito o cubo de aresta $\;D_0B_0\;$ de que partimos.
    1. Para provar que o dodecaedro construído tem os vértices sobre a superfície esférica gerada por uma semi-circunferência de diâmetro igual a $\;A_0B_0\;$começamos por lembrar que a reta $\;PX\;$ é perpendicular ao plano $\;BCE\,$ em $\;P\;$ centro da face $\;BCFE\;$ do cubo de diagonal (diâmetro) $\;A_0B_0\;$ construído cf (XIII.15).
      • (I.47) - Lembremos que o quadrado da diagonal de uma face do cubo é igual a dois quadrados do lado da face e o quadrado da Diagonal do cubo é a soma do quadrado da diagonal da face com o quadrado do lado face. Ou seja o quadrado da Diagonal do cubo (ou diâmetro da esfera em que se inscreve) é três vezes o quadrado dda sua aresta.
      • A reta $\;PX\;$ é a interseção dos planos que cortam ao meio duas faces opostas (dois planos opostos, como eles descreveram) do cubo ($\;BCE, \;ADI\;)$ e, por isso, cf (XI.38), interseta a Diagonal (diâmetro) do cubo no centro da esfera em que se inscreve o cubo. Chamámos $\;Z\;$ a esse ponto, como confirmará na nossa ilustração. $\;ZP\; é metade do lado da face do cubo.
    2. Para além de $\;Z\;$, temos $\;XZ, \; UZ, \;$ que nos permitirão provar que o vértice $\;U\;$ do dodecaedro é um ponto da esfera de centro em $\;Z\;$ e diâmetro igual a $\;A0B_0:\;$
      • Como já vimos $\;P\;$ divide $\;NS\;$ em média extrema razão, sendo $\;NP>PS\;$ e, cf (XIII.4), $$\;NS^2+SP^2=3NP^2$$
      • Os dados da construção que fomos descrevendo indicam que $\;NP=PZ\;$ e $\;XP=PS\;$. Por ser $\;XZ= XP+PZ, \;\;\; XZ= SP+PN= SN.\;$ Também $\;PS=PR\;$ e, por isso, $\;PS=XU.\,$ O triângulo $\;UZX\;$ é retângulo em $\;X\;$ e, cf (I.47), $\;ZU^2= ZX^2+xU^2.\;$ E podemos escrever que $$ZU^2 =NS^2+SP^2 = 3NP^2\;$$
      $UZ^2=3NP^2$ é o mesmo que dizer que $\;UZ\;$ é o raio da esfera em que está encapsulado o cubo de aresta $\;AB\;$ dupla de $\;NP\;$. (XIII.15 : o raio da esfera é três vezes o quadrado de lado igual a metade da aresta do cubo nela inscrito.)
      Fica assim demonstrado que o vértice $\;U\;$ do dodecaedro construído é um ponto da esfera em que se inscreve o cubo, cujos vértices estão sobre a superfície esférica e são também vértices do octaedro. Raciocínio análogo pode ser aplicado para a cada um dosvértices do dodecaedro que não seja vértice do cubo.
  3. Qual é o comprimento da aresta do dodecaedro inscrito numa superfície esférica de diâmetro $\;A_0B_0\;$?
    • $\;UV =RS\;$ já que $\;UV\;$ e $\;RS\;$ são segmentos de paralelas entre paralelas $\;RU\;$ e $\;SV\;$ (estas últimas construídas como perpendiculares ao plano $\;BEF\;$
    • Como sabemos $\;R\;$ foi determinado como ponto que divide $\;NP\;$ em média e extrema razão, sendo $\;RP>PN:\;$ $$\frac{NP}{PR}=\frac{PR}{RN}$$ E assim, como é óbvio, $\;\displaystyle \frac{2NP}{2PR}=\frac{2PR}{2RN}.\;$
    • $\;S\;$ foi determinado do mesmo modo que $\;R\;$ e óbvio é que $\;NP= PO,\; NR=SO, \; RP=PS\;$, sendo , por isso, $\;2NP=NO, \; 2NR =NR+SO, \; 2PR=RS, \; RS>2NR $
      E podemos escrever que $$\frac{NO}{RS}=\frac{RS}{2RN}$$ que se pode traduzir por $\;RS\;$ é a parte maior de uma divisão de $\;NO\;$ em média e extrema razão.


    Como $\;NO\;$ é igual à aresta do cubo $\;D_0B_0\;$, a aresta do dodecaedro inscrito numa esfera dada é igual à parte maior da aresta do cubo inscrito na mesma esfera quando a dividimos em média e extrema razão.


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.8.15

Elementos: Construir um icosaedro (Proposição 16 do Livro XIII)


Proposição 16:
Construir um iscosaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;AB\;$ a azul na figura em que também tomamos um ponto $\;C\;$ do diâmetro tal que $\;AC+CB=AB\;$ e $\;AC=4\times BC\;$ e um ponto $\;D\;$ da semicircunferência $\;ADB\;$ tal que $\; A\hat{C}D\;$ seja reto. Ficam traçados também a azul $\;CD, \;DB,\;$, este último presente em todos os passos da construção. Passos da construção:
  1. Tomamos uma circunferência de raio $\;DB\;$, e sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  2. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$ Desta circunferência, na nossa construção, designamos por $\;V\;$ o seu centro.
    A circunferência de raio $\;DB\;$ e centro em $\;W\;$ em que se inscreve $\;QRSTU\;$ está num plano paralelo ao plano de $\;EFGHK\;$ ou $\;LMNOP\;$, sendo $\;EQ=VW=VE=DB. \;$

    © geometrias. 2 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\; UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    E, como $\;QL^2=EL^2+QE^2,\; QL\;$ pode ser visto como lado do pentágono inscrito em $\;(I, DB), \;$ do qual $\;OP, \; \;LP,\;$ também podem ser vistos como lados, o triângulo $\;QLP\;$ é equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
    Como já tínhamos visto, $\;QRSTU\;$ é um pentágono equilátero de lados paralelos e iguais ao pentágono inicial $\;EFGHK\;$ e assim são equiláteros (por terem lados comuns aos dos triângulos anteriormente referidos de que são iguais) os triângulos $\; LQR, \;MRS, \;NST, \;OTU.\;$
  3. Sobre a reta que passa pelos centros $\;V,\; W\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;V,\;X\;$ e $\;W,\;Z.\;$ Como $\;VX\;$ é o lado do decágono e $\;VP\;$ é o lado do hexágono (raio), sendo $\;X\hat{V}P\;$ um ângulo reto, então $\;PX\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LX = MX=NX=OX=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(V, VP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;XLM, \;XMN, \;XNO, \;XOP, \;XPL,\;$ e iguais a $\;PQL, \ldots\;$
  4. De igual modo se provaria que são iguais aos anteriores os triângulos $\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ.\;$

Temos assim um sólido limitado por uma superfície fechada composta por 20 triângulos iguais entre si e equiláteros, a saber
$\;XLM, \;XMN, \;XNO, \;XOP, \;XPL;\;\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ;\; \;LRM,\; MSN, \; NTO,\; OUP,\;PQL;\;$ $ \; LQR, \;MRS, \;NST, \;OTU,\;PUQ,\;$ que são as 20 faces; de lados $\;XL, \;XM, \;XN,\; XO, \; XP; \;PL,\; LM, \;MN, \;NO, \; OP; \;PQ, \;QL, \;LR, \;RM,\;MS,\;SN,\;NT,\;TO,\;OU,\;UP;\;$ $\; QR,\;RS,\; ST,\;TU,\;UQ;\;QZ,\;RZ,\;SZ,\;TZ,\;UZ,\;$ que são as 28 arestas; cujos extremos são $\;V, \;L, \;M, \;N, \;O, \;P, \;Q, \;R, \;S, \;T, \;U, \;W,\;$ que são os 12 vértices do icosaedro.



Falta provar que este icosaedro está encapsulado (ou inscrito?) numa esfera gerada por um semicírculo de diâmetro $\;AB\;$:
Por construção, sabemos que $\;XV=WZ=PE,\; VW=DB\;$ (respetivamente lado do decágono e lado do hexágono regulares inscritos na mesma circunferência em que se inscreve o pentágono $\;EFGHK.\;$ Por isso, $\;VZ =VW+WZ\;$ é dividido pelo ponto $\;W\;$ em média e extrema razão (prop. XIII.9 : se os lados de um hexágono e de um decágono inscritos num mesmo círculo forem acrescentados um ao outro, obtém-se um segmento de reta que fica dividido em média e extrema razão pelo ponto de junção, sendo a parte maior o lado do hexágono) o que pode ser descrito por $$\; \displaystyle \frac{VZ}{VW}= \frac{VW}{WZ}.$$
  1. Consideremos os segmentos $\;ZE, \;EV, \;EX, \;$ para além de $\;XZ, \;XV,\;VW, \;WZ, \;VZ,\; $ os triângulos $\;ZVE, \;XVE,\;ZEX\;$ e os ângulos $\;Z\hat{V}E, \;X\hat{V}E,\;$ retos, por construção. Como $\;VW=VE=EQ=DB\; $ e $\;WZ=VX=PE,\;$ a expressão acima permite-nos escrever $\; \displaystyle \frac{VZ}{VE}= \frac{VE}{VX}\;$ relacionando lados dos triângulos $\;ZVE, \;XVE,\;ZEX\;$ que, por isso, os dois primeiros são triângulos retângulos em $\;V\;$ e o terceiro é retângulo em $\;E\;$ de altura $\;VE = DB\;$, semelhantes entre si (VI.8). O ponto $\;E\;$ é pois um ponto da semicircunferência de diâmetro $\;XZ\;$. A mesma semicircunferência passa por $\;Q\;$ (já que, obviamente e do mesmo modo, o triângulo $\;XQZ\;$ é retângulo em $\;Q\;$ e de hipotenusa $\;XZ\;$ e com $\;QW=DB.\;$ E, mantendo fixo o diâmetro (eixo) $\;XZ,\;$, a semicircunferência passará por todos os pontos angulares (vértices) do icosaedro construído, ao rodar em torno de $\;XZ.\;$
    Fica assim provado que o icosaedro construído está encapsulado numa esfera de diâmetro $\;XZ.\;$ Será esta esfera de diâmetro $\;AB ? \;$
    • Sabemos que $$\frac{VZ}{VW}= \frac{VW}{WZ} \Leftrightarrow VW^2 = VZ \times WZ $$ Consideremos o ponto $\;J\;$ médio de $\;VW\;$ que é também o ponto médio de $\;XZ=XV+VW+WZ\;$ já que $\;XV=WZ\;$. Prova-se que, sendo $\;VW\;$ o maior na divisão, por $\;W\;$ de $\;VZ\;$ em média e extrema razão, o quadrado do menor $\;WZ\;$ acrescentado de metade do maior $\;JW\;$ é 5 vezes o quadrado deste: $$(JW+WZ)^2 =5 \times JW^2$$ o que é fácil de verificar. (Assim: $\;VW=2\times JW, \;$ então $\;VW^2= 4\times JW^2 \;\;$ e, como antes tínhamos visto, $\;VW^2= VZ \times WZ.\;$ Conclui-se que $ \; 4\times JW^2 = VZ \times WZ. \;$ Como $\;VZ=VW+WZ \;$ e $\;VW=2\times JW,\;$ podemos escrever $ \; 4\times JW^2 = (VW+WZ)\times WZ = VW\times WZ +WZ^2 =2\times JW\times WZ+WZ^2,\;$ e, concluindo $JZ^2 = (JW+WZ)^2 = JW^2 + WZ^2 + 2JW\times WZ = JW^2+4\times JW^2 = 5\times JW^2.\;$)
      Sendo $\;JZ^2=5\times JW^2,\;$ como $\;XZ=2\times JZ \;$ e $\;VW= 2\times JW\;$, $\;XZ^2 = 5\times VW^2.\;$


    • Dos dados iniciais, lembramos um triângulo $\;ADB\;$ retângulo em $\;D\;$ e de hipotenusa $\;AB\;$, sendo $\;CD\;$ a altura a ela relativa e $\;C: AC=4CB.\;$
      São semelhantes entre si os triângulos retângulos $\;ABD, \;DAC, \;BDC\;$. Da semelhança $\;ABD \sim BDC\;$ retiramos $\; \displaystyle \frac{AB}{BD} = \frac{BD}{BC}\;$ ou $\;BD^2 = AB\times BC\;$.
      Como $\;AB =AC+CB\;$ e $\;AC=4\times CB, \; AB= 5\times BC ou \displaystyle BC = \frac{AB}{5}.\;$
      Podemos agora escrever que $\;5\times BD^2= AB^2.\;$ E como $\;VW=DB\;$, concluímos assim que $\;AB^2 = XZ^2\;$ e $\;AB=XZ.$
Fica assim demonstrado que o icosaedro construído está encapsulado numa esfera de diâmetro de comprimento $\;AB.\;$

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

15.8.15

Relações entre os lados dos pentágono, decágono e hexágono inscritos numa mesma circunferência


Proposição 16:
Construir um iscosaedro inscritível numa dada esfera.


Passos da construção:
Seja $\;AB\;$ o diâmetro da esfera em que pretendemos inscrever um icosaedro.
  1. Começamos por dividir o diâmetro $\;AB\;$ em duas partes $\;AC\;$ e $\;CB\;$ de tal modo que $\;AC=4\times CB\;$ (VI.10). E seja o semicírculo $\;ADB\;$ de diâmetro $\;AB\;$ e tal que $\; A\hat{C}D\;$ seja reto. Tomamos $\;DB.\;$
  2. Depois tomemos uma circunferência de raio $\;DB\;$ e, sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  3. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$

    © geometrias. 25 de julho de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\;$$ UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    Por razões análogas, podemos concluir que os triângulos construídos $\;LRM, \; MSN,\; NTO,\; OUP.\;$ E, como $\;QL\;$ e $\;OP \;$, assim como $\;LP,\;$ também podem ser vistos como lados do pentágono, o triângulo $\;QLP\;$ é também equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
  4. Sobre a reta que passa pelos centros $\;I,\; J\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;I,\;V\;$ e $\;J,\;W.\;$ Como $\;IV\;$ é o lado do decágono e $\;IP\;$ é o lado do hexágono (raio), sendo $\;V\hat{I}P\;$ um ângulo reto, então $\;PV\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LV = MV=NV=OV=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(I, IP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;VLM, \;VMN, \;VNO, \;VOP, \;VPL,\;$ e iguais a $\;PQL, \ldots\;$
  5. De igual modo se provaria que são iguais aos anteriores os triângulos $\;WQR, \;WRS, \;WST, \;WTU, \;WUQ.\;$


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.7.15

Relações entre tetraedro e cubo inscritos numa mesma esfera.


As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
  1. o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
  2. sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
  3. para o tetraedro inscrito, a aresta é $\;AD ;\;$
  4. para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
Em (XIII.13) vimos que $\;AB^2=\displaystyle \frac{3}{2}AD^2\;$ e, em (XIII.15), vimos que $\;AB^2=3DB^2\;$. Em consequência, de $\;\displaystyle \frac{3}{2}AD^2 = 3DB^2\;$ se retira que $\;AD^2=2DB^2,\;$ ou seja que $\;AD\;$ é o comprimento da diagonal de um quadrado de lado igual a $\;DB\;$. Assim vimos que a aresta de um tetraedro inscrito numa esfera de diâmetro dado tem comprimento igual à diagonal da face do cubo inscrito na mesma esfera.

© geometrias. 23 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.

Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

7.7.15

Elementos: Construção de um cubo inscritível numa dada esfera


Proposição 15:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.

Construção:
  1. Seja $\;AB\;$ o diâmetro de uma dada esfera (ou seja a esfera gerada pela revolução de um semicírculo em torno do seu diâmetro de comprimento $\;AB\;$)
  2. Dividimos $\;AB\;$ em dois segmentos $\;AC\;$ e $\;CB\;$ tais que $\;AC=2CB\;$
  3. Tiremos por $\;C\;$ uma perpendicular a $\;AB\;$ e, no mesmo plano, tomemos $\;D ,\;$ ponto de interseção dessa perpendicular com a semicircunferência de diâmetro $\;AB\;$
  4. Tracemos $\;CD\;$ e $\;DB.\;$ - $\;A\hat{C}D=D\hat{C}B = 1\;$ reto
  5. Tomámos depois um ponto $\;E\;$ e, a partir dele, construímos um quadrado $\;EFGH\;$ de lado igual a $\;DB\;$.
  6. Em seguida, tirámos por $\;E, \;F,\; G,\;H\;$ perpendiculares ao plano do quadrado $\;EFGH\;$ e, sobre cada uma delas, tomámos um ponto de modo a obtermos $\;EK, \;FL,\; GM,\; HN\;$ iguais a um dos segmentos $\;EF, \; FG,\;GH,\;FE.\;$
  7. Finalmente, desenhámos $\;KL,\;LM,\; MN,\;NK.\;$
Obtivemos assim um cubo, limitado pelos seis quadrados iguais $\;EFGH, \;KLMN, \;EFLK,\;FGML,\;GMNH, \;NHKE.\;$

Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Tomamos $\;KG\;$ e $\;EG.\;$Por construção $\;KE\;$ é perpendicular ao plano $\;EFG\;$ e é por isso, perpendicular a $\;EG\;$ - $\;K\hat{E}G\;$ é reto - o que quer dizer que a semicircunferência de diâmetro $\;KG\;$ passa por $\;E.\;$
    Como $\;GF\;$ faz ângulos retos com cada uma das retas $\;FL\;$ e $\;FE\;$, então $\;GF\;$ também faz ângulos retos com o plano $\;KEF\;$ e, por isso, também é reto o ângulo $\;G\hat{F}K.\;$ E, portanto a semicircunferência de diâmetro $\;KG\;$ também passará por $\;F\;$ na sua rotação em torno de $\;KG.\;$
    Iguais raciocínios nos permitem concluir que essa semicircunferência rodando em torno de $\;KG\;$ passará por todos os vértices do cubo construído.
    Assim, mantendo fixo $\;KG\;$ a semicircunferência em revolução passa pelas mesmas posições desde que iniciou a rotação, o que quer dizer que o cubo está compreendido numa esfera de diâmetro $\;KG.\;$
    Será que está compreendido na esfera dada?
    1. Como $\;GF=FE\;$ e $\;G\hat{F}E\;$ é ângulo reto, então $\;GE^2 =FG^2+FE^2 = 2\times EF^2.\;$ Mas como $\;EF=EK\;$ então $\;EG^2=2\times EF2\;$ e como o ângulo $\;G\hat{E}K\;$ é reto, então $\;KG^2= GE^2+EK^2\;$. Podemos concluir que $\;GK^2=2EF^2+EF^2=3EF^2\;$
    2. Por terem ângulos iguais, cada um a cada um, os triângulos $\;ADB\;$ e $\;BCD\;$, sabemos que $$\frac{AB}{DB}=\frac{DB}{BC} \; \; \; \text{que é o mesmo que} \; \; \; DB^2=AB\times BC$$ e, como $$\;\displaystyle \frac{AB}{BC}= \frac{AB\times AB}{AB\times BC}\;$$ sendo, por construção, $$\;\displaystyle \frac{AB}{BC}=3 \;\; \text{e}\;\; \frac{AB}{BC}=\frac{AB^2}{BD^2} \;\; \text{então} \;\; AB^2=3\times DB^2$$ Na Geometria de Euclides, este resultado aqui apresentado a partir algebricamente já foi demonstrado antes por métodos geométricos....
    3. /ol> Fica assim provado que, por ser $\;EF=DB\;$ e $\;AB^2=3\times DB^2$ podemos concluir que $\;AB^2= GK^2\;$ e $\;AB=GK.$ Ou seja o cubo construído é inscritível numa esfera de diâmetro $\; AB\;$ dado.
              □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

1.7.15

Livro XIII: Construção de um octaedro inscrito numa esfera dada


Proposição 14:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera.
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=CB\;$
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;DB\;$
  4. Prolongámos $\;CD\;$ e tomámos sobre essa a reta, a partir de $\;C\;$ em sentido oposto ao de $\;D,\;$ um segmento de comprimento igual $\;AB\;$ e uma circunferência com esse segmento para diâmetro.
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ dessa circunferência e nela inscrevemos um polígono $\;EFGH\;$ tais que $\;EF = EG = FG=GH=DB\;$. Podíamos ter tomado um outro quadrado de lado igual a $\;DB\;$ em qualquer lugar do espaço. As opções tomadas só têm a ver com aspeto e tamanho da nossa construção.
  6. Sendo $\;K\;$ o centro da circunferência, tirámos uma perpendicular ao plano da circunferência $\;(EFGH)\;$ e sobre ela tomámos $\;L\;$ e $\;M,\;$ um de cada lado do plano de $\;(EFGH)\;$, tais que $\;KL=KM=KE=KF=KG=KH\;$
  7. Os 6 pontos $\;E,\;F,\;G,\;H,\;L,\;M\;$ serão vértices de um sólido de 8 faces triangulares $ \;LEF,\;LFG,\;LGH, \;LHE,\;MEF, \;MFG, \;MFH, \; MHE,\;$ que duas a duas se intersetam em alguma das 12 arestas $\;EF, \;FG, \;GH, \;HE, LE,\;LF,\;LG,\;LH,\;ME, \;MF,\;MG,\;MH.\;$ Traçamos tais arestas e faces.
Demonstraremos que o sólido construído é o octaedro requerido e que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octaedro inscrito na esfera.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Por construção, $\;EFGH\;$ é um quadrado de lado igual a $\;DB.\;$E $\;EK=FK=GK=HK=KL=KM\;$ sendo iguais os ângulos $\;L\hat{K}E = M\hat{K}E = L\hat{K}F =M\hat{k}F = … = \;$1 reto. Por isso, $\;EK^2=LK^2, \; \; EL^2= 2\times EK^2. \;$ Do mesmo modo, $\;EH^2=2 \times EK^2\;$ e, por isso, $\;EL=EH\;$. Pelas mesmas razões, $\;LH = HE.\;$. Assim, podemos concluir que o triângulo $\;LEH\;$ é equilátero.
    Podemos concluir que são equiláteros todos os restantes triângulos cujas bases são os lados do quadrado $\;EFGH\;$ e o terceiro vértice opostos de cada base é $\;L\;$ ou $\;M\;$. Isto quer dizer que construímos um sólido cujas faces são triângulos equiláteros iguais, ou seja, é um octaedro o que construímos.
  2. Falta-nos provar que os vértices do octaedro construído são pontos da superfície esférica de diâmetro igual a $\;AB.\;$ Assim provamos a seguir:
    1. Por construção, $EF=FG=GH=HE=DB$ e, como vimos, os triângulos de bases $\;EFL, \;FGL, \;GHL, \;HEL, \: EFM, \;FGM, \;GHM, \;HEM, \: $ são equiláteros de lados iguais a $\;DB.\;$
    2. Como $\;LK, \;KM,\;KE\;$ são iguais, a semicircunferência desenhada de diâmetro $\;LM\;$ também passa por $\;E.\;$ E pela mesma razão, o semicírculo rodando em torno de $\;LM\;$ fixo também passa pelos pontos $ \;F, G, H\;$ e o octaedro terá os seus vértices numa esfera de diâmetro $\;LM.\;$
    3. E dado que $\;LK=KM\;$ e $\;KE\;$ comum nos triângulos $\;LKE\;$ e $\;MKE\;$ ambos retângulos em $\;\hat{K}\;$, $\;LE=EM\;$
    4. E como, por construção $\;L\hat{E}M\;$ é reto por estar inscrito num semicírculo de diâmetro $\;LM, \;$ então $\;LM^2= 2 \times LE^2\;$
    5. E como, por construção, o triângulo $\;ADB\;$ é retângulo em $\; \hat{D}\;$ (inscrito no semicírculo) e $\;AD=DB\;$ então $\;AB^2=AD^2+DB^2, \;$ de onde retiramos que $AB^2=2\times DB^2$
    6. Por ser, como vimos, $\;LE =DB\;$, podemos dizer que $\;AB^2=LM^2= 2 \times LE^2$, de onde se conclui:
      $\;AB=LM\;\;$ e $\;\;AB^2 = 2 \times LE^2$
    Fica assim provado que a semicircunferência de diâmetro $\;LM\;$ gera uma esfera (a passar pelos vértices do octaedro construído) congruente com esfera dada - gerada pela semicircunferência de diâmetro $\;AB.\;$
    e também ficou provado que o quadrado de lado igual ao diâmetro de uma esfera dada é igual ao quadrado de lado igual à aresta do octaedro nela inscrito.           □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

26.6.15

Livro XIII: Construção de um tetraedro inscrito numa esfera.



Proposição 13:
Construir uma pirâmide regular (ou tetraedro), inscrevê-la numa dada esfera e mostrar que o quadrado do diâmetro da esfera é uma vez e meia o quadrado do lado (aresta) da pirâmide.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera (ou igual a ele) No nosso caso, tomámos mesmo um segmento que é o eixo da esfera gerada pelo semicírculo $\;(ADB)\;$
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=2.CB\;$ (Prop. 9 Livro VI (9.6))
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;AD\;$
  4. Tomámos um círculo $\;EFG\;$ de raio iguala $\;DC\;$ e tal que $\;HK\;$ é perpendicular a $\; AB \; $ tirada pelo centro $\;O\;$ do semicírculo $\;ADB\;$ e $\;HK= AC\;$ (de um modo mais geral só é preciso que $\;HK\;$ seja perpendicular ao plano do círculo $\;(EFG)\;$
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ genérico da circunferência $\;(H, \;DC)\;$ que, por isso, pode mover-se sobre ela em que inscrevemos um triângulo equilátero determinámos $\;EFG\;$ tais que $\;EF = EG = FG\;$
  6. Finalmente, traçamos os 6 segmentos $\;FE, \;EG, \;FG, \;KE, \;KF, \;KG\;$ que são certamente arestas de uma pirâmide triangular cujas faces são os 4 triângulos $\;EFG, \;KEF, \;KEG, \; KFG\;$
Será a pirâmide assim construída um tetraedro com os 4 vértices $\;K, \;E, \;F, G\;$ incidentes na superfície esférica gerada por uma semicírcunferência de diâmetro $\;AB?\;$ Falta demonstrar que é! E demonstrar que $\;AB^2 = \displaystyle \frac{3}{2}.AD^2.\;$

© geometrias. 23 de junho de 2015, Criado com GeoGebra

Demonstração:
  1. Da construção, sabemos que
    1. sendo $\;AC=2CB \; \text{e}\; AB=AC+CB, \; \text{então}\; AB=3CB\;$
    2. o ângulo $\;ADB\;$ é um reto por estar inscrito num semicírculo, ou seja, o triângulo $\;ABC\;$ é retângulo em $\;D\;$
    3. sendo $\;CD\;$ é altura relativa à hipotenusa $\;AB\;$ do triângulo retângulo $\;ADB\;$ de catetos $\;AD\;$ e $\;DB\;$. O triângulo $\;ABC\;$ tem os ângulos iguais cada um a cada um, a cada um dos triângulos em que está dividido por $\;CD,\;$ a saber : $\;ACD,\;DCB \;$.
    Por ser $\;ABD \sim DAC, \; \;\;\displaystyle \frac{AB}{AD}= \frac{DA}{AC}, \;$ ou seja, verifica-se que $\;\; AD^2=AB\times BC$
    Por construção $\; \displaystyle \frac{AB}{BC} = 3 \;$ que nos permite dizer que $\; \displaystyle \frac{AB\times BC}{BC\times BC} = \frac{AD^2}{BC^2} =3\;$ ou que $\;AD^2= 3 \times BC^2 .$
    (Note que estes resultados aparecem n'Os Elementos demonstrados geometricamente com recurso a figuras e operações como as de remover ou juntar (sem sobreposição) e retirar figuras congruentes ou iguais em área para obter novas figuras. É um bom exercício reconstruir esse processo, especialmente para os que parecem imediatos, vistos algebricamente, como é o último destes.)
  2. A pirâmide triangular construída é regular:
    1. Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
      Pela proposição 12, estudada no artigo anterior, garantimos que o quadrado de lado igual ao de um triângulo equilátero é triplo do quadrado do raio da circunferência em que se inscreve: No nosso caso, podemos escrever que $\;EF^2= 3\times KE^2 = 3 \times CD^2$.
      Fica assim claro que, $\;EF^2 = AD^2\;$ por serem ambos iguais a $\;3 \times CD^2\;$ e, finalmente, podemos dizer que $\;EF=AD\;$.
      A base $\;EFG\;$ da pirâmide construída é um triângulo equilátero de lado igual a $\;AD\;$
    2. Por construção, $\;HK\;$ é tomada sobre a perpendicular ao plano de $\;(EFG)\;$ e, por isso é perpendicular a todas as retas desse plano que incidam em $\;H\;$, ou seja: os triângulos $\;KEH, \; KFH,\; KGH\,$ são triângulos retângulos em $\;H\;$, sendo os seus catetos, por construção, iguais a $\;CD=KE\;$ e a $\;AC\;$
      Por isso, $\;KE^2 =KF^2=KG^2 = AC^2+ CD^2= AD^2$. Ou seja, os lados $\;KE,\;KF, \;KG\,$ destes triângulos retângulos são iguais $AD$ e iguais aos $\;EF, \;EG, \;FG\;$, para concluirmos que os triângulos $\;KEF, \;KFG, \;KGE,\; EFG\;$ são triângulos equiláteros de lados iguais a $\;AD\;$
    A pirâmide construída tem as seis arestas iguais e as quatro faces triângulares iguais entre si, equiláteras e equiangulares.
  3. Falta agora provar que os vértices da pirâmide construída incidem numa superfície esférica igual à de diâmetro $\;AB\;$.
    Por construção $\;HK=AC=2BC.\;$ Tome-se $\;L\;$ colinear com $\;H, \;K\;$ e tal que $\;HL=BC:\;$ Assim $\;KL=AB=AC+BC=3BC.\;$
    Assim como $\; \displaystyle \frac{AC}{CD} = \frac{CD}{CB} , \;$ também $\;\displaystyle \frac{KH}{HE} = \frac{HE}{HL},\;$ já que $\;HK=AC, \; HE=CD, \; HL=CB \,$ e $\;KH\times HL=HE^2,\;$ para além de cada um dos ângulos $\;K\hat{H}E, E\hat{H}L\;$ ser reto, ficando garantido que o semicírculo de diâmetro $\;KL\;$ passa por $\;E\;$. Se considerarmos fixado o diâmetro $\;KL,\;$ no movimento volta inteira do semicírculo em torno de $\;KL\;$, o semicírculo passará pelos pontos $\;F,\;G\;$ já que $\;FL\;$ e $\;LG\;$ acompanham o movimento rigidamente e os ângulos em $\;F \;$ e em $\;G\;$ se tornam retos e a pirâmide é compreendida pela esfera dada já que para $\;KL, \;$ o diâmetro da esfera é igual ao diâmetro $\;AB\;$ da esfera dada e $\;KH\;$ foi construído igual a $\;AC \;$ e $\;HL\;$ igual a $\;CB.\;$
  4. Só nos falta provar que o quadrado do diâmetro da esfera é igual a uma vez e meia o quadrado do lado da pirâmide.
    Como $\;AC=2\times CB, \;\;\; AB= 3 \times CB\;$ e $\;\displaystyle \frac{AB}{AC} = \frac{3}{2}\;$ ou $\; AB=1,5 \times AC.\;$
    Ao mesmo tempo, $\; \displaystyle \frac{BA}{AC} =\frac{BA^2}{AD^2}\;$. Portanto $$\; \displaystyle \frac{BA^2}{AD^2} = \frac{3}{2}\;$$ ficando assim provado que o quadrado sobre o diâmetro $\;AB\;$ da esfera é uma vez e meia o quadrado sobre a aresta $\;AD.\;$ □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

22.6.15

Elementos: Livro XIII, Proposição 12


Até agora, temos dedicado algum do nosso tempo a estudar geometria plana (usando como instrumentos a régua e o compasso euclidianos e as construções com eles feitas que foram passando a instrumentos). Fomos optando por uma entre várias aplicações disponíveis (GSP, ZuL/CaR, Cinderella, Cabri, …) nas suas diferentes versões mais adequadas ao que íamos fazendo e às possibilidades de as usarmos em apresentações dinâmicas a distância (web; html). Recentemente decidimos pegar em problemas de construção dos Livros de "Os Elementos" que se ocupam dos sólidos, especialmente do Livro XIII e último que trata dos sólidos platónicos.
Temos vindo a experimentar (dificuldades a) fazer construções, usando o Geogebra5 (e também o Geeometry Applet , usado por David Joyce para ilustrar com construções Euclide's Elements)

Mariana Sacchetti entendeu (e bem!, em coro o dizemos) a respeito destes últimos livros, introduzir as seguintes citações:
(…) A contribuição mais importante do Livro XIII de Euclides é a demonstração que existem cinco e apenas cinco sólidos platónicos (…)
Euclides dá instruções explícitas sobre como construir cada um dos cinco sólidos platónicos- mais precisamente constrói estes sólidos platónicos dentro de esferas (…).
As provas encontradas no Livro XIII não são devidas a Euclides mas a Teeteto. Alguns investigadores afirmam mesmo que Euclides terá seguido textualmente o trabalho de Teeteto (…)
(…) Teeteto nasceu durante a Guerra do Peloponeso, morreu na batalha entre Atenas e Corinto (369 a.c.). Estudou matemática com Teodoro que afirmou"Este rapaz avança em direcção à aprendizagem e investigação de modo suave, seguro e com sucesso, numa brandura perfeita , como um fluxo de óleo que flui sem fazer ruído, de forma que ficamos maravilhados como ele consegue tudo isto com a sua idade." Foi formador na Academia de Platão durante quinze anos (…)
(…) Muitos historiadores argumentam que toda a matemática contida nos Livros X e XIII de Euclides é devida a Teeteto (…)
retiradas de
David S. Richeson: A Pérola de Euler. A fórmula dos poliedros e o nascimento da topologia, Gradiva. Lisboa:2015
Já demos exemplos suficientes para compreender como pensaram e trabalharam geometricamente as demonstrações de resultados algébricos (ou como se construiu a algebra geométrica). Nesta fase, vamos usar definições e proposições adaptadas à atualidade bem como terminologia adaptada e escrita simbólica. Para a construção de um tetraedro inscrito numa esfera de raio dado - objeto da Proposição 13 do Livro XIII, precisamos de olhar para a Proposição 12 que a precede. Proposição 12:
Se um triângulo equilátero está inscrito num círculo, então o quadrado de lado igual ao lado do triângulo é triplo do quadrado de lado igual ao raio do círculo.
Seja $\;ABC\;$ um triângulo equilátero inscrito num círculo $\;(D, \;r)\;$ de centro $\;D \;$e raio $\;r= DA=DB=DC$. Prova-se que $\;AB^2= 3r^2.$

© geometrias. 22 de junho de 2015, Criado com GeoGebra

Demonstração:
Trace-se a reta $\;AD\;$ e tome-se o ponto $\;E\;$ de interseção de $\;AD\;$ com a circunferência $\;(ABC)=(D,\; r):\; AE = 2r.\;$
Trace-se $\;BE.\;$
O arco $\;(BEC)\;$ da circunferência $\;(D,\; r)\;$ é a sua terça parte, por ser $\;ABC\;$ equilátero: $\;(ABC) =3.(BEC)\;$
O arco $\;(BE)\;$ é a sexta parte da circunferência $\;(ABC)\;$: $\;6.(BE) =(ABC)\;$
Por isso, o segmento de reta $\;BE\;$ é comprimento do lado de um hexágono inscrito em $\;(D, \;r): \;BE=r=DE.$ E como $\;AE= 2DE, \; AB^2=4DE^2=4BE^2.\;$
Mas, como se sabe, $\;AE^2= AB^2+BE^2\;$ por ser $\;DE\;$ um diâmetro de $\;(D, \;r)\;$ e, por isso, $\;ABE\;$ retângulo em $\;B$.
Concluímos que $\;AB^2+BE^2 = 4BE^2.\;$ E, finalmente, $\;AB^2= 3BE^2 =3r^2.\;$ q\;\;\;\;\;\;$ □


Notas:
  1. A razão entre o lado $\;AB\;$ de um triângulo equilátero $\;ABC\;$ e o raio $\;AD\;$ da circunferência em que se inscreve é: $\;\frac{AB}{AD}=\sqrt{3}.\;$
  2. Tome-se o ponto $\;M\;$ de interseção de $\;AE\;$ com $\;BC\;$ que é o ponto médio de $\;BC\;$ e de $\;DE.\;$ Resulta óbvio que a razão entre a altura $\;AM\;$ de um triângulo equilátero $\;ABC\;$ e o diâmetro $\;AE\;$ de uma circunferência em que se inscreve é $\; \displaystyle \frac{AM}{AE} = \frac{3}{4}.\;$


  1. David S. Richeson: A Pérola de Euler. A fórmula dos poliedros e o nascimento da topologia, Gradiva. Lisboa:2015
  2. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  3. David Joyce. Euclide's Elements

6.6.15

Elementos: Determinar o centro de uma circunferência (demonstração)


Nos últimos meses, seguimos um uma sequência de proposições dos Livros I, II, II, IV. A partir de certa altura esteve presente a determinação do centro de um círculo. Inicialmente, sempre tomámos como dispensável ou não essencial a apresentação da proposição (1.3), i.e, a resolução do problema de construção do centro de uma circunferência dada. Temos sempre presente uma construção do centro distinta da construção primitiva presente n'Os Elementos. Além disso, a respetiva demonstração apresentada n'Os Elementos é um bom exemplo de um raciocínio por absurdo se tivermos em atenção à época de Euclides.
Neste "lugar geométrico" foram apresentados muitos problemas de construção do centro, mas nunca nos debruçámos sobre a proposição (1.3). No último número (132) da revista Educação e Matemática (da APM) publica-se um pequeno artigo "O centro desaparecido de uma circunferência" de José Luiz Pastore Mello, que acaba com a frase "Em tempos que o desenho geométrico tem sido tão pouco explorado na escola, o problema apresentado costuma mobilizar intensamente o interesse dos alunos". O problema por ele apresentado é o da "determinação do centro da circunferência usando tão só o compasso euclidiano."
Achamos que esse problema e o teorema de Mohr-Mascheroni pode ser mobilizador do interesse de muitos jovens. Mas não resistimos a chamar a atenção para a construção e respetiva demonstração elementar de Euclides que é mais um "bom" exemplo de construção/demonstração e da genialidade da escola de Euclides.

LIVRO III: PROP. I. PROB.
Achar o centro em um círculo $\;c\;$ dado.



A construção do centro pode ser acompanhada fazendo variar de 0 a 3 o cursor n. Para a demonstração basta reter as condições da construção do centro. Para n=4 acrescentamos alguns elementos necessários para a demonstração.

$\fbox{n=0}\;$ Dada a circunferência $\;c\;$
A construção consiste em:
$\fbox{n=1}\;$ aplicação do Postulado 1 para tomar uma reta que corte a circunferência dada e assinalar os dois pontos $\;A, \;B\;$ de intersecção;
$\fbox{n=2 }\;$ aplicação de (10.1) para dividir $\;AB\;$ ao meio por $\;D$:
$$\;(A, AB).(B, BA) = \{I_1, \; I_2\}\;$$ $$\;I_1 I_2 . AB = \{D \}$$ $$\;I_1 I_2 . c = \{C, \;E \}$$
$\fbox{n=3}\;$ aplicação de (1011) para achar o ponto $\;F\;$ médio de $\;CE:\;$ $$\;(C, \;CE).(E, EC) = \{\; J_1, \; J_2\;\}$$ $$\;J_1J_2. CE = \{\;F\;\}$$ Este ponto $\;F\;$ é o centro da circunferência, como vamos provar.


© geometrias. 5 de Junho de 2015, Criado com GeoGebra



$\fbox{n=4}\;$ Suponhamos que $\;F\;$ não é o centro procurado e seja o centro do círculo $\;c=(ABC)\;$ um outro ponto $\;G.\;$ Tiremos as retas $\;GA, \;GD, \; GB. \;$
Sendo $\;DA=DB\;$ e $\;DG\;$ comum aos triângulos $\;ADG,\; BGD\;$. Sendo $\;G\;$ o centro da circunferência $\;c,\;$ $\;GA=GB,\; $ por serem ambos raios da mesma circunferência. Por terem dois lados iguais cada um a cada um e um terceiro comum, por (8.1) os ângulos compreendidos entre lados iguais são iguais: $\;\angle A\hat{D}G = \angle G\hat{D}B. \;$ Quando uma reta caindo sobre outra, faz com ela ângulos adjacentes iguais entre si, cada um destes ângulos é reto (Def. 10.1), logo $\;\angle G\hat{D}B\;$ é reto. Mas, por construção, também $\;F\hat{D}B\;$ é reto. Logo $\angle F\hat{D}B= \angle G{D}B,\;$ um ângulo maior é igual a um menor, o que não pode ser. Assim o ponto $\;G\;$ não é o centro do círculo $\;c=(ABC). \;$ O mesmo se pode demonstrar de outro ponto qualquer que não seja $\;F\;$. Logo, o ponto $\;F\;$ é o centro do círculo $\;(ABC).\;$ □


COROL. Disto se segue que, se dentro de um círculo, uma linha reta cortar outra em duas partes iguais e perpendicularmente, o centro do círculo deve estar na primeira linha que corta a outra.
Livro I
POSTULADO I
Pede-se, como cousa possível, que se tire de um ponto qualquer para outro qualquer ponto uma linha reta.
POST III
E que com qualquer centro e qualquer intervalo se descreva um círculo.
AXIOMA I.
As cousas que são iguais a uma terceira, são iguais entre si
AXIOMA II.
Se a coisas iguais se juntarem outras iguais, os todos serão iguais
AXIOMA III.
E se de cousas iguais se retirarem outras iguais, os restos serão iguais
DEFINIÇÃO X.
Quando uma linha reta caindo sobre outra linha reta fizer com esta dois ângulos iguais, um de uma e outro de outra parte, cada um destes ângulos iguais se chama ângulo reto e a linha incidente se diz perpendicular à outra linha sobre a qual cai.
DEFINIÇÃO XV.
Círculo é uma figura plana fecha por uma só linha, a qual se chama cirucuferência, de maneira que todas as linhas retas que de um certo ponto, existente no meio da figura, se conduzem para a circunferência, são iguais entre si.
DEFINIÇÃO XVI.
O dito ponto se chama centro do círculo.
PROP. VIII. TEOR.
Se dois triângulos tiverem dois lados iguais a dois lados, cada um a cada um, e as bases também iguais, os ângulos compreendidos pelos lados iguais serão também iguais. PROP. X. PROB.
Dividir em duas partes iguais uma linha reta de um comprimento dado.
PROP. XI. PROB.
De um ponto dado em uma linha reta dada levantar uma perpendicular sobre a mesma reta dada


  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944

29.5.15

Elementos: Circunscrever um pentágono regular a um círculo dado


Quando apresentámos os passos da construção de um pentágono regular inscrito num círculo e a respetiva demonstração de que o pentágono assim construído é equilátero e equiângulo - (11.4), fechamos um ciclo de trabalho que consistiu em seguir os resultados dos Livros I a IV necessários para o fim em vista, ao mesmo tempo que chamamos atenção para a organização de "Os Elementos".
A este respeito, para além dos livros referidos ao longo dos anos, recomendamos vivamente a consulta do espantoso, paciente e persistente trabalho de David E. Joyce , DMCS, Clark University
A última entrada serviu para verificar a validade da construção mais usual do pentágono regular inscrito numa circunferência dada.

Nesta entrada construímos um pentágono regular tal que cada um dos seus lados é tangente a um círculo dado, aplicando (11.4)
LIVRO IV: PROP. XII. PROB.
Circunscrever a um círculo dado um pentágono equilátero e equiângulo.

. A construção consiste em
  • aplicação de (11.4) para obter 5 pontos $\;A,\;B,\;C,\;D, \;E\;$ sobre a circunferência dada tais que são iguais os segmentos de reta e os arcos correspondentes: $\;AB=BC=CD=DE=EA\;$
  • aplicação de (1.3) para achar o centro $\;F\;$ do círculo dado, tal que $\;FA=FB=FC=FD=FE\;$
  • aplicação de (16.3 + corol) para determinar as tangentes ao círculo $\; \mbox{em} \;A\;- \;GH, \;\mbox{em}\;B\; - \;HK,\;\mbox{em}\;C\; - \;KL,\;\mbox{em}\;D \; - \;LM,\;\mbox{ e em} \;E\; - \;MG\;$
O pentágono circunscrito de vértices $\;G, \;H,\; K,\;L,\;M\;$ (obtidos por intersecção de pares de tangentes em pares de vértices consecutivos do pentágono $\;A,\;B,\;C,\;D, \;E\;$ regular inscrito) é um pentágono equilátero e equiângulo. Em seguida vamos demonstrar que assim é.

Na construção abaixo, para além dos pontos $\;A,\;B,\;C,\;D, \;E. \;F,\;G,\;H, \;K,\;L,\;M\;$ e dos segmentos $\;GH,\; HK, \; KL,\;LM,\;MG\;$ apresentamos os segmentos $\;FA,\;FB,\;FC,\;FD,\;FE,\;\;FG,\;FH,\;FK,\;FL,\;FM,\; $ necessários para a demonstração.

© geometrias. 29 de Maio de 2015, Criado com GeoGebra




Comecemos por demonstrar que o pentágono $\;GHKLM\;$ construído é equilátero:
Por serem raios da circunferência dada $\;FA=FB=FC=FD=FE\;$ e $\;GH, \;HK,\;KL,\;LM,\;MG\;$ serem tangentes ao círculo respetivamente em $\;A, \;B,\;C,\;D,\;E\;$, $\;\angle F\hat{A}G=\angle F\hat{A}H=\angle F\hat{B}H=\angle F\hat{B}K = \angle F\hat{C}K=\angle F\hat{C}L=\angle F\hat{D}L=\angle F\hat{D}M = \angle F\hat{E}M=\angle F\hat{E}G = 1 reto \;\;\;\;$ (18.3)
Tomemos um par de triângulos, por exemplo $\;FBK, \;FKC\;$ ambos retângulos, um em $\;B\;$ outro em $\;C\;$ e com $\;FK\;$ para lado comum.
Por (47.1) o quadrado de lado $\;FK\;$ tanto é igual em área ao quadrado de lado $\;FB\;$ acrescentado do quadrado de lado $\;BK\;$, como ao quadrado de lado $\;FC\;$ acrescentado do quadrado de lado $\;KC\;$. Estas duas últimas figuras iguais à mesma (quadrado de lado $\;FK\;$) são iguais entre si (ax 1) e se retirarmos a cada uma delas um quadrado de lado $FB=FC$ ficamos com duas figuras iguais (ax 3) os quadrados de lados $\;BK\;$ e $\;CK\;$: $\;BK=CK.\;$
Por (8.1), por ser $\;FB=FC, \; BK=CK\;$ e $\;FK\;$ comum aos dois triângulos $\;FBK, \; FKC\;$, concluímos que $\; \angle B\hat{F}K=\angle C\hat{F}K \; \; \angle B\hat{K}F = \angle F\hat{K}C.\;$ Em consequência, como $\; \angle B\hat{F}C=\angle B\hat{F}K+\angle C\hat{F}K, \;\; \angle B\hat{F}C= 2\times\angle B\hat{F}K\; $ e, do mesmo modo, $\; \angle B\hat{K} C = 2\times \angle F\hat{K}C.\;$
Pela mesma razão, $\; \angle C\hat{F}D= 2\times\angle C\hat{F}K, \; \; \; \; \angle D\hat{F}C= 2\times\angle L\hat{F}C.\; $
Por (27.3) Como os segmentos e arcos $\;BC,\; CD\;$ são iguais, $\angle B\hat{F}C = \angle C\hat{F}D\;$ e como $ \; \angle B\hat{F}C= 2\times\angle C\hat{F}K\; \wedge D\hat{F}C= 2\times\angle L\hat{F}C, \; $ $\; \angle F\hat{C}K = \angle F\hat{C} L\;$ e, por (26.1), sendo iguais os triângulos $\;FKC\;$ e $\;FLC,\;$ como $\; \angle F\hat{C}K = \angle F\hat{C} L,\;$ $\;KC = CL\; \wedge \;FK= FL \;$ e daí $\;KL = 2\times KC.\;$ Pela mesma razão $\;HK= 2\times BK\;$ e como $\;BK=KC\;$ é $\;HK=2\times KC =KL.\;$
De modo análogo, se prova que $\;HG=GM =ML=KL=KL.\;$ □

Finalmente demonstramos que o pentágono $\;GHKLM\;$ construído é equiângulo:
Já vimos antes que $\; \angle F\hat{K} C = \angle F\hat{L}C.\;$ e que, por ser $\;\angle H\hat{K}L = 2\times \angle F\hat{K}C, \;\angle K\hat{L}M = 2 \times \angle F\hat{L}C, \;\;\;\; \; \angle H\hat{K}L = \angle K\hat{L}M. \;$
De modo análogo, se prova que
$\;\angle G\hat{H}K = \angle H\hat{K}L = \angle K\hat{L}M = \angle L\hat{M}G= \angle M\hat{G}H \;$
Fica provado que o pentágono $\;GHKLM\;$ é equiângulo. □

Livro I
POSTULADO I
Pede-se, como cousa possível, que se tire de um ponto qualquer para outro qualquer ponto uma linha reta.
POST III
E que com qualquer centro e qualquer intervalo se descreva um círculo.
AXIOMA I.
As cousas que são iguais a uma terceira, são iguais entre si
AXIOMA II.
Se a coisas iguais se juntarem outras iguais, os todos serão iguais
AXIOMA III.
E se de cousas iguais se retirarem outras iguais, os restos serão iguais
PROP. I. PROB.
Sobre uma linha reta determinar um triângulo equilátero
PROP. II. PROB.
De um ponto dado tirar uma linha reta igual a outra linha reta dada.
PROP. V. TEOR.
Em qualquer triângulo isósceles, os ângulos que estão sobre a base são iguais e produzidos os lados iguais os ângulos que se formam debaixo da base são também iguais
PROP. VI. TEOR.
Se dois ângulos de um triângulo forem iguais, os lados opostos a estes ângulos serão também iguais
PROP. VIII. TEOR.
Se dois triângulos tiverem dois lados iguais a dois lados, cada um a cada um, e as bases também iguais, os ângulos compreendidos pelos lados iguais seão também iguais. PROP. XI. PROB.
De um ponto dado em uma linha reta dada levantar uma perpendicular sobre a mesma reta dada
PROP. XXVI. TEOR.
Se em dois triângulos dois ângulos de um forem iguais dois ângulos do outro, cada um a cada um, e um lado do primeiro igual a um lado do outro, e forem estes lados ou adjacentes ou opostos a ângulos iguais, os outros lados dos dois triângulos serão iguais aos outros lados, cada um a cada um; e também o terceiro ângulo será igual ao terceiro.
PROP. XXXII. TEOR.
Em todo o triângulo, produzido um lado qualquer, o ângulo externo é igual aos dois internos e opostos e os três ângulos internos de um triângulo qualquer são iguais a dois retos.
.......................................
Livro II
PROP. I. PROB.
Achar o centro de um círculo dado
PROP.VI. PROB
Se uma linha reta fôr dividida em duas partes iguais, e em direitura com ela se puser outra reta, será o retângulo compreendido pela reta tôda e mais a adjunta, e pela mesma adjunta juntamente com o quadrado da metade da primeiro igual ao quadrado da reta, que se compõe da mesma metade, e da outra reta adjunta.
.......................................
LIVRO III
DEFINIÇÂO VI.
Segmento de círculo é uma figura compreendida por uma linha reta e por uma porção da circunferência do círculo
DEFINIÇÂO VII.
O ângulo do segmento é aquele que é formado pela reta e pela porção de circunferência
DEFINIÇÂO VIII.
Um ângulo se diz estar ou existir no segmento quando é formado pelas retas que, de um ponto qualquer, tomado na circunferência do segmento, se tiram para os extremos da reta que é a base do segmento.
PROP. I. PROB.
Achar o centro em um círculo dado. PROP. XVI. TEOR.
A reta, que de uma extremidade do diâmetro de um círculo se levantar, perpendicularmente, sôbre o mesmo diâmetro, cairá tôda fora do círculo; e entre esta reta e a circunferência não se poderá tirar outra linha reta alguma; que é o mesmo que dizer, que a circunferência do círculo passará entre a perpendicular ao diâmetro, e a reta que com o diâmetro fizer um ângulo agudo, por groode que seja; ou também que a mesma circ1tnferência passará entre a dita perpendicular e outra reta, que fizer com a mesma perpendicular um ângulo qualquer, por pequeno que seja
PROP. XVIII. TEOR.
Se uma linha reta tocar um círculo, e do centro fôr tirada para o ponto do contacto outra reta, esta cairá perpendicularmente sôbre a tangente
PROP. XX. TEOR:
Em todo o círculo o ângulo que é feito no centro é o dobro do ângulo que está na circunferência, tendo cada um destes ângulos como por base a mesma porção da circunferência.
PROP.XX!. TEOR.
Em todos o círculo os ângulos que existem no mesmo segmento são iguais entre si
PROP. XXVI. TEOR.
Em círculos iguais os ângulos, que são iguais, e existem ou nos centros ou nas circunferências, assentam sobre arcos também iguais.
PROP. XXIX TEOR.
Em círculos iguais, a arcos iguais correspondem cordas iguais.
PROP. XXXII. TEOR.
Se uma linha reta for tangente de um círculo e se do ponto do contacto se tirar outra reta que divida o círculo em dois segmentos, os ângulos que esta reta fizerem com a tangente serão iguais aos ângulo que existem nos segmentos alternos
PROP. XXXVII. TEOR.
Se de um ponto qualquer fora de um círculo se tirarem duas retas, das quais uma corte o círculo, e a outra chegue somente até a circunferência; e se o retângulo compreendido pela reta inteira que corta o círculo e pela parte dela que fica entre o dito ponto e a parte convexa da circunferência, fôr igual ao quadrado da reta incidente sôbre a circunferência, será a reta incidente tangente do círculo
Livro IV
DEFINIÇÃO III.
Uma figura retilínea se diz inscrita em um círculo quando cada um dos ângulos dela toca a circunferência do circulo
DEFINIÇÃO IV.
Uma figura retilínea se diz circunscrita a um círculo quando cada um dos lados da dita figuran toca a circunferência do circulo
DEFINIÇÃO VII
Uma linha reta se diz inscrita em um círculo quando as extremidades dela estão na circunferência
PROP. I. TEOR.
Em um círculo dado inscrever uma linha reta igual a outra dada, e não maior que o diâmetro do círculo dado.
PROP. II. PROB.
Em um círculo dado inscrever um triângulo equiângulo a outro triângulo dado.
PROP. V. PROB.
Circunscrever um círculo a um triângulo dado.


  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000