Mostrar mensagens com a etiqueta triângulo. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta triângulo. Mostrar todas as mensagens

10.6.22

uma propriedade de todos os triângulos


Os pontos $\;A, \;B, \;C, \;$ de que pode mudar as posições, são vértices de um triângulo $\;\Delta [ABC].\;$ $\;M\;$ é o ponto médio do lado $\;[BC].\;$
A circunferência definida pelos três vértices do triângulo $\;\Delta [ABC]\;$ e tomámos as suas tangentes em $\;B\;$ e em $\;C\;$ que se intersetam num ponto $\;D\;$. Olhamos para os ângulos $\;\angle {MÂB}\;$ e $\; \angle {CÂD}\;$.
Pedimos que prove ser verdade (ou não) que são iguais os ângulos $\;\angle {MÂB}\;$ e $\; \angle {CÂD}\;$.

Nós ficamos à espera de nós...
$ \;\hspace{3.5cm}\;$... e vós?

7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16

14.2.18

Reta de Simson: caso de colinearidade das projeções de um ponto sobre três retas



TEOREMA DE SIMSON: Se de um ponto tomado sobre a circunferência circunscrita a um triângulo baixarmos perpendiculares a cada lado do triângulo, os pontos assim obtidos estão em linha reta
PROBLEMA: Demonstrar que são colineares os pés das perpendiculares aos lados de um triângulo tiradas de qualquer ponto da circunferência circunscrita

F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Théorème de Simson. 22. Si d'un point pris sur la circonférence circonscrite à un triangle, on abaisse des perpendiculaires sur chaque côté du triangle, les trois points ainsi obtenus sont en ligne droite.
Ce théorème s'énonce quelque fois comme il suit:
Les projections d'un point quelconque de la circonférence circonscrite à un triangle, sur chaque côté de ce triangle, sont en ligne droite.



$\;\fbox{n=1}:\;$ Apresentam-se um triângulo $\;[ABC],\;$ a circunferência $\;(ABC)\;$ e um ponto $\;P\;$ nelaa
$\;\fbox{n=2}:\;$ As perpendiculares tiradas por $\;P\;$ a cada uma das retas $\;BC, \;CA, \; AB\;$ do trilátero $\;ABC,\;$ determinam os respetivos pés $\;D, \;E, \;F.\;$
$\;\fbox{n=3}:\;$ E, para a posição de $\;D, \;E, \;F\;$ da nossa figura inicial,ficam determinados dois quadriláteros convexos $\;[FAEP],\;[PCDE]\;$ que são inscritíveis, porque
  • o primeiro tem ângulos retos opostos, obviamente de soma rasa - $\;P\hat{E}A, \;A\hat{F}P;\;$ e
  • o segundo tem dois triângulos retângulos com a mesma hipotenusa $\;PC:\;\; [CDP], \;[PEC], \;]$ que é o diâmetro da comum circunscrita aos dois triângulos retângulos, i.e, a passar pelos pontos $\;P, \;C, \;D, \;E.\;$

Para outras posições de $\;P\;$ sobre a circunferência $\;(ABC),\;$ teremos naturalmente de considerar outros quadriláteros, mas serão análogos os raciocínios a fazer para provar que os pontos $\;D,\;E, \;F\;$ são colineares.


13 fevereiro 2018, Criado com GeoGebra



Fixemo-nos no caso da nossa figura inicial, em que $\;P\;$ está no arco $\;(CA)\;$ da circunferência $\;(ABC);\;$ e $\;D \in [BC], \;E \in [AC], \; F \in \dot{B}A \setminus [BA].\;$
Nestas condições, podemos dizer que $\;D, E, F\;$ são colineares se e só se $\;D\hat{E}C = F\hat{E}A, \;$ já que, como o vértice $\;E\;$ é ponto de uma reta $\;AC\;$ dada, aqueles ângulos só são iguais se forem verticalmente opostos, i.e. os segundos lados estiverem sobre uma mesma reta.
Finalmente
  • Sabemos que $\;\angle P\hat{A}F\;$ é suplementar de $\;\angle B\hat{A}P\;$, já que $\;D\;$ é um ponto da reta $\;BA;\;$
  • e também são suplementares os ângulos $\;\angle B\hat{A}P\;$ e $\;\angle P\hat{C}B\;;$ opostos no quadrilátero $\;[PABC]\;$ inscrito na circunferência $\;(ABC)\;$
  • em consequência, $\;\angle P\hat{A}F =\angle P\hat{C}B.\;$
  • Como $\;\angle P\hat{A}F\;$ (ou $\;\angle P\hat{C}B\;$ ) é complementar de $\;\angle F\hat{P}A\;$ e $\;\angle P\hat{C}D\;$ (ou $\;\angle P\hat{C}B\;$) é complementar de $\;\angle D\hat{P}C\;$ podemos concluir que $\;\angle D\hat{P}C= \angle F\hat{P}A\;$
  • Considerando a circunferência $\;(PFAE)\; $ os lados dos ângulos $\;\angle F\hat{P}A\;$ e $\;\angle F\hat{E}A\;$ compreendem o mesmo arco $\; \widehat{FA}\;$ dessa circunferência, o que nos permite concluir que $\;\angle F\hat{P}A = \angle F\hat{E}A\;$
  • e do mesmo modo, concluímos que são iguais os ângulos inscritos no mesmo arco $\;\widehat{CD}\;$ da circunferência $\;(CDEP):\;\;\; \angle C\hat{E}D =\angle C\hat{P}D\;$
  • Resumindo e concluindo $$\; \left(\angle D\hat{P}C= \angle F\hat{P}A\; \wedge \;\angle F\hat{P}A = \angle F\hat{E}A\; \wedge \;\angle C\hat{E}D =\angle C\hat{P}D \right) \Rightarrow \angle F\hat{E}A = \angle C\hat{E}D, \;$$ ou seja os pontos $\;D, \;E,\;F\;$ estão sobre uma mesma reta □
$\;\fbox{n=4}:\;$ Apresenta-se a reta onde incidem os pés das perpendiculares sobre cada um dos lados de triângulo tiradas por um ponto $\;P\;$ da circunferência circunscrita ao triângulo. A cada posição do ponto $\;P\;$ na circunferência corresponderá uma reta a que chamamos reta de Simson (ou de Wallace?)

27.8.17

Dividir um triângulo em duas partes equivalentes sendo uma delas um triângulo rectângulo

Dividir um triângulo em duas partes equivalentes por uma perpendicular a um lDO
Dividir um triângulo em duas partes equivalentes
por uma perpendicular a um dos seus lados

Apresentamos a seguir uma construção dinâmica a ilustrar que para qualquer triângulo e um dos seus lados há uma perpendicular a esse lado que o divide em dois polígonos equivalentes

O enunciado do problema desta entrada é:
Dado um triângulo acutângulo $\;ABC\;$ determinar uma perpendicular a $\;BC,\;$por exemplo, que divide $\;ABC\;$ em duas partes iguais em área.

Pode seguir as etapas da nossa construção e notas de demonstração usando a barra de navegação para passos da construção ao fundo do rectângulo de visualização
  1. Apresenta-se inicialmente um triângulo $\;ABC.\;$
    • Sabemos que, das perpendiculares a $\;BC,\;$ a altura $\;AD\;$ divide o triângulo $\;ABC\;$ em duas partes.
      Quando e só quando $\;D\;$ é o ponto médio de $\;BC,\;$ $\;ABD\;$ é equivalente a $\;ACD\;$ e o segmento de reta que procuramos é a altura $\;AD\;$
    • Quando a área de $\;ABD\;$ é maior que a área de $\;BAD,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AB\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C] \; $$
      Como determinamos $\;D’$?
    • Quando a área de $\;ABD\;$ é menor que a área de $\;ADC,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AC\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’CD’] \cup[D’A’AB]\; \;\; \wedge\;\;\; \mbox{Área de }\;\;[A’D’C] = \mbox{Área de }\;\;[D’A’AB] \; $$
      Para este caso, a determinação de $\;D'\;$ segue os mesmos passos.
  2. 26 agosto 2017, Criado com GeoGebra

  3. Na figura agora apresentada, estão visíveis todos os elementos construtíveis auxiliares para a determinação da perpendicular $\;A’D’\;$ tal que $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \;\; \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C]. \; $$ Se se verificam as condições de divisão de $\;ABC\;$ em duas partes equivalentes, então $$\;\mbox{Área de}\;\;[ABC] = 2 \times \mbox{Área de}\;\;[A’BD’]\;\; \mbox{ou} \;\; \mbox{Área de}\;\;[A’BD’] = \frac{1}{2}\mbox{Área de}\;\;[ABC] $$ que é o mesmo que dizer $$\frac{BD’ \times A’D’}{2} = \frac{1}{2} \times \frac{BC\times AD}{2}$$ e, tomando o ponto $\;M\;$ médio de $\;BC\;$, que é tal que $\;\displaystyle BM=\frac{BC}{2},\;$ podemos escrever $$\mbox{Área de}\;\;[A’BD’] = \frac{BD’ \times A’D’}{2}= \frac{1}{2} (BM\times DA)$$ A condição para a posição de $\;A’D’\;$ pode assim resumir-se a $$\; BD’ \times A’D’ = BM\times DA \;\; \mbox{ou} \;\; \frac{BD’}{BM}=\frac{DA}{D’A’}$$ Como $\;A’D’\;$ e $\;AD\;$ são perpendiculares à mesma $\;BC\;$, os triângulos $\;ABD\;$ e $\;A’BD’ \;$ são retângulos com um ângulo comum $\;\hat{B}.\;$ $$\;\displaystyle \frac{DA}{D’A’} =\frac{BD}{BD’}\;$$ E podemos assim escrever $$\frac{BD’}{BM}=\frac{BD}{B’D’}\;\; \mbox{ou} \;\; BD’^2 = BM \times BD$$ o que nos determina a posição de $\;D’\;$ sobre $\;BC.\;$ Na nossa construção optámos por considerar a potência do ponto $\;B\;$ relativa à circunferência de diâmetro $\;MD\;$ e como o segmento da tangente a esse círculo tirada por $\;B\;$ é tal que $\;BT^2=BM \times BD\;$ sendo $\;T\; $ o ponto de tangência, $\;D’\;$ determina-se como um ponto de intersecção $\;[BC] \cap (B, \; BT)\;$
  4. Realçam-se o triângulo $\;A’BD’\;$ de área igual a metade da área de $\;ABC\;$ e o equivalente quadrilátero $\;AA’D’C\;$ ambos azulados.
  5. Quando passa para a etapa 4 na barra de navegação dos passos de construção, verá o mesmo que viu na etapa anterior a menos que coloque $\;A\;$ numa posição para a qual a área de $\;ABD\;$ seja menor que a área de $\;CAD.\;$ Deslocando $\;A\;$ para o lado de $\;B\;$ passará pelo caso em que $\;AD\;$ divide $\;ABC\;$ em dois triângulos iguais e finalmente para o caso em que uma perpendicular a $\;BC\;$ divide $\;ABC\;$ em duas partes equivalentes: $\;CA'D'\;$ e $\;ABD'A'\;$ esverdeadas.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

11.8.17

Crescente equivalente a um triângulo

Crescente equivalente a um triângulo.
Um Crescente é equivalente a um triângulo

Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um triângulo a um Crescente limitado por dois arcos circulares.

O enunciado do problema desta entrada é:
Demonstrar que um Crescente Vermelho (entre dois arcos) na figura é igual em área a um triângulo.

Para além da superfície que estudamos, apresentam-se inicialmente retas, segmentos e arcos que ajudam a compreender a construção e permitem determinar a sua área da superfície em estudo ou a compará-la com outras áreas. Na construção deve recorrer à barra de navegação para passos da construção e seguir etapas da construção e os raciocínios até à demonstração (acompanhados de fórmulas que não escondem o uso dos axiomas da igualdade em geral e neste caso de igualdade entre áreas)
  1. Apresenta-se inicialmente uma circunferência de centro $\;O\;$ e diâmetro $\;AB\;$ e a mediatriz de $\;AB\;$ que intersecta a circunferência em $\;C, \;D.\,$
  2. 11 agosto 2017, Criado com GeoGebra

  3. A seguir mostra-se a circunferência de centro em $\;D\;$ e raio $\;DA:\;$.
    Como $\;CD\;$ é a mediatriz de $\;AB,\;$ sabemos que $\;AD=BD;\;$ e, como $\;AB\;$ é diâmetro de $\;(O, \;OA)\;$ e $\;D \in (O,\;OA),\;$ o triângulo $\;ABD\;$ é rectângulo em $\;D\;$. Por isso, $\;AB^2= 2AD^2 .\;$ Claro que também podíamos ter usado o facto de $\;ODA\;$ ser triângulo rectângulo em $\;O\;$ para concluir que $\;AD^2 = 2OA^2\;$
  4. O semicírculo de centro $\;O\;$ e raio $\;OA\;$ que designamos por $\;\widehat{ACB}\overline{BA},\;$ neste passo evidenciado, tem área $$\; \frac{\pi\times OA^2}{2}= \frac{\pi \times 2.OA^2}{4} =\frac{\pi \times AD^2}{4}\;$$
  5. Chamamos Crescente ao que sobra do semicírculo vermelho após retirarmos o segmento circular $\;\widehat{AB}\overline{BA}\;$ do círculo $\;(D,\;DA).\;$
  6. O segmento circular referido tem área igual à área do que sobra do sector circular $\;D\widehat{AB}\;$ (quarto do círculo) $$\;\frac{\pi \times AD^2}{4}$$ depois de lhe retirarmos o triângulo $\;ABD\;$ rectângulo em $\;D\;$ de área $$\; \frac{AD^2}{2}$$
  7. Por um lado a área do Crescente é igual à área do semicírculo de centro $\;O\;$ e raio $\;OA\;$ $$\frac{\pi \times AD^2}{4}$$ subtraída da área do segmento que é, como vimos, $$\frac{\pi \times AD^2}{4} - \frac{AD^2}{2} $$ ou seja, $$ \mbox{Área do Crescente} = \frac{\pi \times AD^2}{4} - \left(\frac{\pi \times AD^2}{4} - \frac{AD^2}{2}\right)= \frac {AD^2}{2}= \mbox{Área do triângulo}\,\;\; ABD $$ como queríamos demonstrar.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

2.7.14

Resolver um problema de construção usando análise e síntese (5)


Problema:     Construir um trapézio de que se conhecem os quatro lados
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Suponhamos o problema resolvido: Teríamos um trapézio $\;[ABCD]\;$ que tem por lados $\;AB=a, \;BC=b, \; CD=c, \; DA=d, \;$ sendo $\;AB \;$ a base maior e $\;CD\;$ a base menor do trapézio. Tirando por $\;C\;$ uma paralela a $\;DA\;$, ela corta $\;AB\;$ em $\;E.\;$ Do triângulo $\;[BCE]\;$ conhecemos os comprimentos dos seus três lados: $\;EB=AB-AE=a-c, \;BC=b, \; EC=AD=d\;$.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 8}.\;$

© geometrias, 2 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que um triângulo de lados $\;b, \;d, \;|a-c|\;$ é parte do trapézio que pode ser construída e a partir do qual se pode construir um trapézio com os lados dados.
  2. Começamos por tomar um ponto $\;B\;$ qualquer
  3. O ponto $\;C\;$ pode ser um ponto qualquer da circunferência de raio $\;b\;$ e centro em $\;B\;$
  4. Relativamente a esses $\;B\;$ e $\;C\;$, o ponto $\;E\;$ referido na análise do problema é um dos pontos da interseção da circunferência de centro $\;B\;$ e raio igual a $\;|a-c|\;$ (diferença das bases do trapézio) com a circunferência de centro $\;C\;$ e raio $\;d.\;$
  5. Temos um triângulo $\;[BCE]\;$, a partir do qual se pode construir o trapézio.
    O que falta para termos o trapézio que procuramos resume-se a obter os dois vértices do paralelogramo de $\;[AECD]\;$ de que conhecemos $\;CE=d =AD, \;CE \parallel AD, \; AE=c=CD, \;AE \parallel CD.\;$
  6. $\; A \in BE.(B, \;a)\;$
  7. A paralela a $\;CE\;$ tirada por $\;A\;$ interseta a paralela a $\;BE\;$ tirada por $\;C\;$ no ponto $\;D\;$.
  8. E, finalmente, podemos apresentar o polígono $\;[ABCDE]\;$ que é o trapézio requerido. □
A existência de solução do problema está ligada às condições de existência do triângulo $\;[BCE]\;$, a saber
$\;|a-c| < b+d, b<|a-c|+d, d<|a-c|+b \;$ que é o mesmo que $\;|b-d|< |a-c| < b+d . \;$
No caso dos dados originalmente apresentados, consideramos$\;c < a\;$ e portanto $\;|a-c|=a-c\;$, isto é, que $\;a\;$ e $\;c\;$ são respetivamente a base maior e a base menor do trapézio.

14.5.14

Resolver problema de construção de triângulo usando homotetia


Problema:     Desenhar um triângulo $\;ABC\;$ de que é dada a posição de $\;A\;$ e dois segmentos com comprimentos iguais a $\;a+b=BC+AC\;$ e $\;a+c=BC+AB\;$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas e na resolução do problema da entrada anterior.


© geometrias, 14 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo, pode seguir os passos da construção.
  1. São dados o vértice $\;A\;$ e os comprimentos $\;a+b, \;a+c\;$
  2. Se desenharmos um triângulo qualquer $\;AB_1C_1\;$, sendo $\;AC_1 = a+b\;$ e $\;AB_1 = a+c\;$, o problema resume-se ao da anterior entrada, já que queremos $\;AC=b=AC_1-a, \;AB=c=AB_1-a, BC=a\;$ que é o mesmo que dizer que queremos determinar os pontos $\;B\;$ de $\;AC_1\;$ e $\;C\;$ de $\;AB_1\;$ tais que $\;BB_1= BC=CC_1 =a\;$
    Começamos por determinar os pontos $\;B_1, \;C_1\;$ tais que $\;AB_1=a+c, \;AC_1=a+b$.
  3. Traçados os lados do triângulo $\;AB_1C_1\;$, sobre $\;AB_1\;$, marcamos um ponto qualquer $\;B'\;$.
  4. Determinamos o ponto $\;C''\;$ sobre $\;AC_1\;$ tal que $\;C_1C''=B_1B''$. O mais natural é que $\;C_1C''=B_1B''\neq B'C''$
  5. Tirando por $\;C''\;$ uma paralela a $\;B_1C_1\;$, esta interseta a circunferência de centro $\;B'\;$ e raio $\;B'B_1\;$ num ponto $\;C'\;$ tal que $\;B'B_1=B'C'=C'C'_1\;$ , sendo o triângulo $\;A'B_1C'_1\;$ correspondente de $AB_1C_1$ por uma homotetia de centro em $\;B_1\;$: $$\begin{matrix} A_1 & \longmapsto &A\\ B_1 &\longmapsto &B_1\\ C'_1 & \longmapsto & C_1 \end{matrix}$$
  6. Essa homotetia de centro $\;B_1\;$ fará corresponder $\;C'\;$ a $\;C= B_1C'.AC_1\;$ e
  7. $\;B'\;$ a $\;B\;$, este último determinado como interseção do lado $\;AB_1\;$ com a paralela a $\;B'C'\;$ tirada por $\;C$.
  8. A homotetia transforma segmentos iguais em segmentos iguais. Assim, $$\begin{matrix} B_1B' &= &B'C'&=&C'C_1 &&\\ \downarrow&\Downarrow&\downarrow&\Downarrow&\downarrow&&\\ B_1B&=&BC&=&CC_1&=&a \end{matrix}$$
  9. $\;AB =AB_1-BB_1=a+c-a=c, \; BC=a, \; AC=AC_1-C_1C= a+b-a=b\;$
  10. Desenhámos assim um triângulo $\;ABC\;$ que é a solução do problema, para um arbitrado ângulo $\hat{A}$, que pode variar deslocando $\;B_1\;$ ou $\;C_1$

10.3.09

Ponto de Steiner, ponto de Tarry e recta de Brocard

Tomemos os pontos de Steiner, de Tarry e as intersecções da recta de Brocard (definida por O e Le) com o circuncírculo. Estes quatro pontos definem um rectângulo inscrito no circuncírculo. Os lados do rectângulo são paralelos aos eixos das elipses de Steiner.


[A.A.F.]

29.1.09

Ponto de Steiner e triângulo de Brocard

No triângulo ABC sejam O o centro do circuncírculo e Le o ponto simediano (ou de Lemoine). O círculo de diâmetro OLe é o círculo de Brocard, como vimos. Por O tracemos perpendiculares aos lados a, b, c; as suas intersecções com o círculo de Brocard são os vértices A’, B’, C’ do “primeiro triângulo de Brocard”. Por A tracemos uma paralela ao lado B’C’, por B uma paralela ao lado A’C’, por C uma paralela ao lado A’B’: as três rectas intersectam-se no ponto de Steiner. O ponto de Steiner é sempre um ponto do circuncírculo.




Sobre esta construção, criada com GeoGebra, pode deslocar os vértices para verificar os invariantes. A única ferramenta - ao cimo à direita - permite-lhe voltar ao ponto de partida. Se precisar da aplicação GeoGebra, basta clicar duas vezes sobre o quadro dinâmico.

13.7.07

Triângulo, cónica e involução

Tome-se o triângulo [ABC] e uma cónica tangente aos lados AB e AC em B e em C. Os pares de pontos de intersecção de r com as rectas AB e AC - (P,P') - e com a cónica -(Q,Q')- estão em involução. Utilizando a régua, determine um ponto duplo dessa involução.


[A.A.M.]

Originalmente, com recurso à aplicação ZuL(CaR)- R. Grothmann, esta publicação dava um enunciado de problema de construção e deixava aberta uma janela dinâmica para permitir ao observador interessado que, com as ferramentas adequadas disponíveis, resolvesse o problema e confirmasse a validade das suas escolhas e resultados. Para o mesmo efeito recorremos à aplicação Cinderella (J.Richter-Geberrt, Ul. Kortenkamp) em algumas iniciativas.
Nestas tentativas de recuperar as imagens (ilustrações dinâmicas) para serem visualizadas por quem visitasse e visite este BloGeometrias repositório das tentativas de estudo (construções) de António Aurélio Fernandes, Arsélio Martins e Mariana Sacchetti.