Mostrar mensagens com a etiqueta análise e síntese. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta análise e síntese. Mostrar todas as mensagens

28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo $\;A\in FE, \;B \in ED, \;C \in DF\;$



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor $\;\fbox{n= 1, 2, … 10}\;$ pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points $\;A, \;B, \;C,\;$ et une circonférence; inscrire dans cette circonférence un triangle $\;DEF,\;$ tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo $\;GF\;$ paralela a $\;BC\;$ e que $\;GE\;$ interseta $\;BC\;$ em $\;H,\;$ sendo iguais os ângulos ($\;BHE\;$ ou) $\;\angle B\hat{H}G\;$ e $\: \angle H\hat{G}F\;$ alternos internos no sistema de retas paralelas $\;GF,\; BC\;$ cortadas pela secante $\;HG\;$ e também $\;\angle H\hat{G}F;$ e $\;BDC\;$ são iguais por estarem inscritos num mesmo arco $\;ETF.\;$ Assim sendo, são semelhantes os triângulos $\;BHE\;$ e $\;BCD\;$ com o ângulo $\;B\;$ comum e os ângulos $\;BHE\;$ e $\;CDB\;$ iguais. E, pelo menos, o ponto $\;H\;$ pode ser determinado por $\;HB.BC=BT^2.\;$
Começamos por aí.
É preciso determinar um dos pontos $\;D,\; E\;$ ou $\;F\;$ para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points $\;A, \;H,\;$ une circonférence et une droite $\;BC.\;$ Déterminer sur cette circonférence un point $\;E,\;$ tel qu'en le joignant aux deux points donnés $\;A,\; H,\;$ la corde $\;FG\;$ soit parallèle à la droite $\;BC.\;$ Soit le problème résolu et $\;FG\;$ parallèle à $\;BC.\;$



Consideremos o problema resolvido e $\;FG\;$ paralela a $\;BC.\;$ De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a $\;HA\;$ tirada por $\;F,\;$ que intersecta a circunferência dada em $\;L\;$ e traçamos a reta $\;LG\;$ que intersecta $\;HA\;$ em $\;M.\;$

Nestas condições, temos $\; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi, $
$\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\; $
e, em consequência,
$ \Delta [HGM] \sim \Delta [HEA],\;$ dos quais $\angle \hat{H}\; $ é ângulo comum. E é essa semelhança que nos permite escrever $$\frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 $$ que nos permite determinar sobre $\;HA\;$ o ponto $\;M,\;$ colinear de $\;G, \;L\;$ sendo
$\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )$




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné $\;M,\;$ mener une sécante telle que l'angle inscrit $\;L\hat{F}G\;$, qui correspond à la corde interseptée $\;GL,\;$ soit égale à un anglé donnée $\;A\hat{H}B.\;$



Por um ponto qualquer da circunferência dada, tiramos paralelas a $\;BH\;$ e a $\;MH\;$ ou seja inscrevemos na circunferência um ângulo de amplitude igual a $\; \angle B\hat{H}M\;$
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a $\; \angle B\hat{H}M,\;$ o problema de Castillon fica resolvido tirando por $\;M\;$ a tangente a ela que intersectará a circunferência inicialmente dada nos pontos $\;G, L\;$

Por esse ponto $\;G\;$, finalmente determinado, a paralela a $\;BC\;$ por ele tirada intersecta a circunferência inicial em $\;F.\;$
$\;D\;$ ficará determinado na circunferência pela reta $\;CF\;$ e
o ponto $\;E\;$ ficará determinado sobre a circunferência pela reta $\;DB\;$ ou pela reta $\;FA.\;$… $\blacksquare$

21.3.16

Construir um paralelogramo de que se conhecem as diagonais e um lado


Problema:
Construir um paralelogramo $\;[ABCD]\;$ de que conhecemos os comprimentos de um dos seus lados $\;a=AB\;$ e das suas diagonais $\; d_1=AC, \; d_2= BD.$

Um paralelogramo tem os lados opostos paralelos e de comprimentos iguais: $$\;AB\parallel CD \wedge AB=CD; \; BC\parallel DA \wedge BC=DA\;$$ e cada uma das suas diagonais encontra a outra no seu ponto médio, ou seja, há um ponto
$$\;M : \;\;\;\;AM = MC = \frac{d_1}{2},\;\;\; BM = MD = \frac{d_2}{2}\;$$

Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 21 março 2016, Criado com GeoGebra




Temos dados bastantes para construir um triângulo $\;[AMB]\;$ de lados $\;a=AB, \;\frac{d_1}{2}=AM, \; \frac{d_2}{2}=BM.\;\;\;\;\;$ E a partir dele, tudo se retira:
$\;\left(M,\;\frac{d_1}{2}, \right).AM \rightarrow C, \;\;\;\left(M,\;\frac{d_2}{2}\right).BM \rightarrow D\;$ □

200. Construire un parallèlogramme connaissant ses deux diagonales et un côté.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

14.2.16

Numa circunferência inscrever um triângulo retângulo


Problema:
São dados dois pontos $\;P,\;Q\;$ e uma circunferência $\;(O)\;$
Inscrever na circunferência $\;(O)\;$ um triângulo retângulo tal que a reta de um cateto passe $\;P\;$ e a reta do outro cateto passe por $\;Q.\;$

©geometrias. 14 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Se um dos lados de um ângulo reto tem de passar por $\;P\;$ e outro por $\;Q\;$ então o seu vértice será um ponto da circunferência de diâmetro $\;PQ.\;$ Como o ângulo reto tem vértice sobre a circunferência $\;(O)\;$ este é um dos pontos da interseção das duas circunferências citadas - a que chamamos $\;A\;$. Os restantes vértices serão $\;B\;$ na interseção de $\;(O)\;$ com $\;AP\;$ e $\;C\;$ na interseção de $\;(O)\;$ com $\;AQ.\;$
No caso da nossa figura, o problema tem duas soluções.

148. Inscrire dans un cercle un triangle rectangle dont les cotês de l'angle droit ou leurs prolongements passent par deux points donnés P et Q
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

11.2.16

Circunferência por 2 pontos com tangentes iguais tiradas por 2 ponto distintos


Problema:
São dados quatro pontos $\;A,\;B,\;C,\;D.\;$
Construir a circunferência que passa por $\;A,\;B\;$ e cujas tangentes tiradas por $\;C\;$ e por $\;D\;$ têm o mesmo comprimento.

©geometrias. 10 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Este é mais um dos problemas que se resolve, analisando-o como se o tivessemos resolvido. Claro que, como temos dois pontos $\;A, \;B\;$ da circunferência-solução, sabemos que o seu centro $\;O\;$ é um ponto equidistante de $\;A\;$ e de $\;B\;$.
Também sabemos que $\;CH =DG\;$ se H for o ponto de tangência da tangente tirada por $\;C\;$ e $\;G\;$ for o ponto de tangência da tangente à circunferência tirada por $\;D\;$ e sabemos que $\;OG=OH\;$ (raios) e que $\;OG \perp GD\;$ e $\;OH \perp HC.\;$. E, em consequência, serão iguais os triângulos $\;[CHO]\;$ retângulo em $\;H\;$ e $\;[DGO]\;$ retângulo em $\;G\;$. Assim sendo, serão iguais as hipotenusas $\;OC = OD\;$. Ou seja $\;O\;$ é um ponto equidistante dos pontos dados, $\;C\;$ e $\;D\;$, da mediatriz de $\;CD\;$
Deste modo, $\;O\;$ fica determinado como interseção das mediatrizes de $\;AB\;$ e de $\;CD\;$ e a circunferência requerida tem este centro $\;O\;$ e passa por $\;A\;$

147. On donne quatre points A, B, C, D. Construire un cercle passant par A et B et tel que les tangentes issues de C et D soient égales.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947 >

31.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (2)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos à mesma distância de uma dada reta $\;r.\;$
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 31 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Se $\;A,\;B\;$ estão à mesma distância de $\;r, \;$ $\;AB \parallel r.\;$ O centro da circunferência que passa por $\;A,\;B\;$ é um ponto da mediatriz de $\;AB \;$ que intersecta $\;r\;$ em $\;D.\;$ Como a mediatriz de $\;AB\;$ é perpendicular a $\;AB\;$ também é perpendicular à sua paralela $\;r.\;$ Por isso o ponto $\;D\;$ é o ponto de tangência da circunferência que passa por $\;A, \;B\;$ e é tangente a $\;r.\;$ Assim o centro da circunferência que procuramos é o ponto comum a $\;CD\;$ e a mediatriz de $\;AD\;$ ou de $\;BD\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

5.7.14

Resolver um problema de construção usando análise e síntese (7)


Problema:
Determinar um ponto $\;P\;$ sobre uma reta que contém um diâmetro $\;AB\;$ de uma dada circunferência $\;(O)\;$ tal que, sendo $\;T\;$ o ponto de tangência da tangente à circunferência tirada por $\;P, \;$ $\;PT = 2PA.\;$
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Com o problema resolvido, teríamos uma circunferência $\;(O)\;$, um ponto $\;P\;$ no exterior de $\;(O)\;$ sobre um diâmetro $\;AB\;$, uma tangente num ponto $\;T\;$ da circunferência a passar por $\;P\;$, sendo $\;PT=2PA.\;$
Sabemos também que $\;PA \times PB =PT^2\;$ (potência de um ponto $\;P\;$ relativamente à circunferência $\;(O).\;$)
Assim, de $\;PT^2 =4PA^2= PA\times PB$ se tira $\;4PA=PB=BA+PA\;$ e, em consequência, $\;3PA=AB\;$ ou $\; \displaystyle PA=\frac{AB}{3}.\;$

A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise do problema resolvido. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 5 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que, nas condições do problema, $$PT=2PA \Longrightarrow \displaystyle PA=\frac{AB}{3}.\;$$
  2. Seguindo o que nos é sugerido, começamos por dividir $\;AB\;$ em três partes iguais.
  3. E tomamos para ponto $\;P\;$ um dos pontos de interseção da circunferência $\,\left(A, \;\displaystyle \frac{AB}{3}\right).\;$ com a reta $\;AB\;$, isto é $\;P : 3PA =AB.\;$
  4. Determinamos os pontos $\;T\;$ e $\;U\;$ de tangência das tangentes a $\;(O)\;$ que passam por $\;P\;\;\;\;$
    Será que $\;3PA=AB \Longrightarrow 2PA=PT\;?\;$. Como $\;BP=BA+AP\;$ e, por construção, $\;3PA=AB\;$, $\;BP =4PA\;$
    Por ser $\;PA\times PB = PT^2,\;$ temos $\;4PA^2=PT^2,\;$ e, em consequência $\;2PA=PT\;\;\;\;$ □

2.7.14

Resolver um problema de construção usando análise e síntese (5)


Problema:     Construir um trapézio de que se conhecem os quatro lados
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Suponhamos o problema resolvido: Teríamos um trapézio $\;[ABCD]\;$ que tem por lados $\;AB=a, \;BC=b, \; CD=c, \; DA=d, \;$ sendo $\;AB \;$ a base maior e $\;CD\;$ a base menor do trapézio. Tirando por $\;C\;$ uma paralela a $\;DA\;$, ela corta $\;AB\;$ em $\;E.\;$ Do triângulo $\;[BCE]\;$ conhecemos os comprimentos dos seus três lados: $\;EB=AB-AE=a-c, \;BC=b, \; EC=AD=d\;$.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 8}.\;$

© geometrias, 2 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que um triângulo de lados $\;b, \;d, \;|a-c|\;$ é parte do trapézio que pode ser construída e a partir do qual se pode construir um trapézio com os lados dados.
  2. Começamos por tomar um ponto $\;B\;$ qualquer
  3. O ponto $\;C\;$ pode ser um ponto qualquer da circunferência de raio $\;b\;$ e centro em $\;B\;$
  4. Relativamente a esses $\;B\;$ e $\;C\;$, o ponto $\;E\;$ referido na análise do problema é um dos pontos da interseção da circunferência de centro $\;B\;$ e raio igual a $\;|a-c|\;$ (diferença das bases do trapézio) com a circunferência de centro $\;C\;$ e raio $\;d.\;$
  5. Temos um triângulo $\;[BCE]\;$, a partir do qual se pode construir o trapézio.
    O que falta para termos o trapézio que procuramos resume-se a obter os dois vértices do paralelogramo de $\;[AECD]\;$ de que conhecemos $\;CE=d =AD, \;CE \parallel AD, \; AE=c=CD, \;AE \parallel CD.\;$
  6. $\; A \in BE.(B, \;a)\;$
  7. A paralela a $\;CE\;$ tirada por $\;A\;$ interseta a paralela a $\;BE\;$ tirada por $\;C\;$ no ponto $\;D\;$.
  8. E, finalmente, podemos apresentar o polígono $\;[ABCDE]\;$ que é o trapézio requerido. □
A existência de solução do problema está ligada às condições de existência do triângulo $\;[BCE]\;$, a saber
$\;|a-c| < b+d, b<|a-c|+d, d<|a-c|+b \;$ que é o mesmo que $\;|b-d|< |a-c| < b+d . \;$
No caso dos dados originalmente apresentados, consideramos$\;c < a\;$ e portanto $\;|a-c|=a-c\;$, isto é, que $\;a\;$ e $\;c\;$ são respetivamente a base maior e a base menor do trapézio.

28.6.14

Resolver problema de construção, usando análise e síntese (4)


Problema:     Construir um triângulo isósceles de que se conhecem o circulo circunscrito e a soma da base com a altura correspondente.
Th. Caronnet, Exércices de Géométrie. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
  1. Suponhamos o problema resolvido: Teremos um triângulo isósceles $\;[ABC]\; (AB=AC),\;$ inscrito no círculo circunscrito $\;(O)\;$ dado e tal que a altura $\;AD=h\;$ e a base $\;BC=a\;$ têm soma dada $\;s=a+h.\;$
    • Num triângulo isósceles a altura $\;AD\;$ bisseta a base $\;BC,\;$ por isso passa pelo circuncentro $\;O\;$. Podemos escrever $\;AD+2BD=s.\;$ Quando prolongamos $\;AD\;$ até $\;E\;$ tal que $\;DE=BC,\;$ temos $\;AE=s\;$ e $\;2BD=DE,\;$ donde $\;\displaystyle \frac{BD}{BE} =\frac{1}{2}.$
    • Se prolongarmos $\;EB\;$ até encontrar no ponto $\;F\;$ a tangente a $\;(O)\;$ tirada por $\;A\;$, temos um novo triângulo $\;[EAF]\;$, retângulo em $\;A\;$, que é obviamente semelhante ao triângulo $\;[EDB]: \;\;\; \displaystyle \frac{AF}{AE}=\frac{DB}{DE} = \frac{1}{2};\;\;$ $\;\;AE=s\;$ e $\;\displaystyle AF=\frac{s}{2}.\;$
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 28 de Junho de 2014, Criado com GeoGebra



  1. É dado um segmento de comprimento $\;s=a+h\;$ e uma circunferência de centro $\;O\;$ circunscrita do triângulo procurado.
  2. Assim, começamos por tomar para vértice $\;A\;$ um ponto qualquer da circunferência dada e traçamos o diâmetro que passa por $\;A\;$ e contém a altura $\;h\;$ relativa a $\;a.\;$.
  3. De acordo com o sugerido na análise feita, interessa determinar o ponto $\;E\;$, desse diâmetro tal que $\;AE=a+h\;$: $\;AO.(A,s).\;$
  4. E, em seguida, determinamos o ponto $\;F\;$ da tangente a $\;(O)\;$ tirada por $\;A\;$ e à distância $\;\displaystyle \frac{s}{2}\;$ de $\;A.\;$
  5. A reta $\;EF\;$ interseta a circunscrita $\;(O\;)\;$, para os dados da nosso problema, por exemplo, $\;B\;$. A perpendicular a $\;AE\;$ (ou paralela a $\;AF\;$) interseta $\;(O)\;$ num ponto $\;C\;$, para além de $\;B\;$ e $\;AE\;$ em $\;D\;$. O triângulo $\;[ABC]\;$ de altura $\;AD\;$ é uma das soluções do problema: Como, por construção, $\;O \in AE,\;$ e $\;AE\perp BC, \;$ então $\;AD=DB\;$. Assim fica provado que $\;[ABC]\;$ está inscrito em $\;(O)\;$ e é isósceles. □
  6. Outra solução, será o triângulo $\;[AB_1C_1]\;$ de altura $\;AD_1\;$ e base $\;B_1C_1\;$
Para cada $\;A\;$ de $\;(O)\;$ haverá duas soluções, para os dados que se mostram inicialmente. Fazendo variar o comprimento do segmento $\;s\;$ pode ver em que condições há 0, 1 ou 2 soluções para o problema

26.6.14

Resolver problema de construção, usando análise e síntese (3)


Problema:     Num dado triângulo, traçar uma linha paralela à base de tal forma que se se traçarem a partir dos seus extremos linhas paralelas aos lados até cortarem a base, somadas meçam o dobro que a linha inscrita. (31/12/1881)
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores $\;2\;$de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$
  1. São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;C'\;$ sobre $\;AB\;$ e $\;B'\;$ sobre $\;AC\;$, de tal forma que $\;B'C' \parallel BC \wedge C'E+B'D = 2\times B'C',\;$ sendo $\;D, \;E\;$ pontos de $\;BC\;$ e $\;B'D \parallel AB\;$ e $\;C'E \parallel AC. \;$
  2. Supor que o problema está resolvido é supor que $\;B'C'\;$ está situada de tal forma que $\;B'D\;$ e $\;C'E\;$, paralelas aos lados, somados dêem $\;2B'C'$.
    De acordo com a proposição 34 do Livro I dos Elementos de Euclides
    $\;B'D =C'B\;$ e $\;C'E=B'C\;$ e portanto $\;B'C + C'B = 2B'C'$.
    E há um ponto $\;L\;$ de $\;B'C'\;$ que o divide em duas partes sendo uma igual a metade de $\;B'C\;$ e outra igual a metade de $\;C'B.\;$ Se deteminarmos este ponto $\;L,\;$ por ele passa uma única paralela a $\;BC$...

  3. A construção (sintética, a seguir) está ilustrada para os valores $\;3,\; 4\;$ de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$

    © geometrias, 25 de Junho de 2014, Criado com GeoGebra



    Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta $\;B'C'\;$ .
  4. Para determinar o ponto $\;L\;$ sobre $\; B'C'\;$ paralela a $\;BC,\;$ de tal modo que $\;2LC'=C'B\;$ e $\;2LB'=B'C \;$ (i.e. $\;2(LC'+LB')= 2C'B' =C'B+B'C = B'D+C'E\;$ ), podemos usar um ponto $\;F\;$ qualquer de $\;AB\;$ (ou de $\;AC\;$) e por ele tirar uma paralela a $\;BC.\;$
  5. Depois é só tomar $\;G\;$ sobre essa paralela de tal modo que $\;2FG =FB\;$ e $\;L\;$ estará sobre a reta $\;BG.\;$ Claro que, fazendo o mesmo para o lado $\;AC,\;$ $\;L\;$ estará sobre $\;CK,\;$ estando $\;K\;$ sobre uma paralela a $\;BC\;$ tirada por um ponto $\;H\;$ de $\;AC\;$ sendo $\;2KH=HC.\;$ $\;L\;$ é único $\;CK.BG \;$ e $\;B'C'\;$ é a única paralela a $\;BC \;$ tirada por $\; L$
  6. São semelhantes os triângulos $\;[FBG]\;$ e $\;[C'BL]\;$ e os lados opostos ao ângulo $\;\hat{B}\;$ comum são homólogos e $\;BC' = 2C'L,\;$ já que por construção $\;FB=2FG.\;$ Do mesmo modo, se mostra que $\;2LB'=B'C\;$ □
O ponto $\;F\;$ pode tomar as diversas posições sobre $\;AB.\;$ Verá que a variação de $\;F\;$ sobre $\;AB\;$ não afeta a posição de $\;L.\;$ No caso da nossa construção, quando $\;F\;$ toma a posição de $\;C',\;$ $K\;$ toma a posição de $\;B',\;$ $\;G\;$ e $\;K\;$ coincidem com $\;L.\;$ Os pares de arcos iguais (centrados em $\;F\;$ e $\;M,\;$ e em $\;H\;$ e $\;N$)   acompanham a deslocação de $\;F\;$ e ilustram as relações estabelecidas.

22.6.14

Resolver problema de construção, usando análise e síntese (2)


Problema:     Traçar num dado triângulo um segmento paralelo à base de tal forma que, se a partir dos seus extremos se tirarem segmentos paralelos aos lados até à base, a sua soma seja igual ao primeiro segmento.
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008
São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge DE= DF+EG,\;$ sendo $\;F, \;G\;$ pontos de $\;BC\;$ e $\;EG \parallel DB\;$ e $\;DF \parallel EC. \;$
Considerando que, para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores $\;1,\;2\;$de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$
  1. No problema resolvido temos os pontos dados $\;A, \;B, \;C\;$ e também os pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge DE= DF+EG,\;$ sendo $\;F, \;G\;$ pontos de $\;BC\;$ e $\;EG \parallel DB\;$ e $\;DF \parallel EC. \;$
  2. $\;[DBGE]\;$ e $\;[DFCE]\;$ são paralelogramos, logo
    $\; DE= EG+DF = DB+EC \;$

  3. A construção (sintética, a seguir) está ilustrada para os valores $\;3,\; 4\;$ de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$

    © geometrias, 22 de Junho de 2014, Criado com GeoGebra



    Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta $\;DE\;$ .
  4. Começamos por traçar as bissetrizes dos ângulos $\;A\hat{B}C\;$ e $\;B\hat{C}A\;$ e designemos por $\;H\;$ o ponto em que elas se encontram (aliás, este ponto é o incentro do triângulo $\;[ABC]\;$, comum às suas três bissetrizes e equidistante dos seus três lados).
    Por $\;H\;$ tiramos a paralela a $\;BC\;$ que interseta os lados $\;AB\;$ e $\;AC\;$ respetivamente em $\;D\;$ e em $\;E\;$
  5. Como $\;DE \parallel BC, \;\; D\hat{H}B =H\hat{B}F= D\hat{B}H\;$ e, em consequência, $\;DB=DH. \;$
    Do mesmo modo, $\;E\hat{H}C= H\hat{C}G = E\hat{C}H \;$ e, em consequência, $\;EC=EH\;$ e
    DE= DH+HE =DB+EC
    Finalmente, já que $\;B, \;E\;$ e $\;D, \;C\;$ são vértices de paralelogramos, então $\;EG=DB, \;DF=EC \;$ e, em consequência, $\;DE= DF+EG.\;\;\;\; $ □
Completam a ilustração, vários elementos que relacionam este problema de construção com o da anterior entrada. Fica assim apresentada uma nova resolução em que $\;H\;$ é olhado como o pé da bissetriz de $\;\hat{A}\;$ no triângulo $\;[ADE].\;$

19.6.14

Resolver problemas de construção, usando análise e síntese (1)


Muitas vezes, um problema é construído a partir da sua solução, feito pela observação de resultados de operações sobre ela, ou transformações dela, de que se não deixa rasto. Por isso, muito frequentemente, um problema não é um verdadeiro problema (desafio) para quem apresenta o seu enunciado. A resolução de problemas faz parte da essência da aprendizagem, vital para o desenvolvimento do raciocínio reconstrutivo
Quando olhamos para um problema, o mais natural é não vermos a sua solução até porque ela pode estar escondida num detalhe de que só tomamos conhecimento quando decompomos o problema em partes (quando fazemos a análise da substância do dito) e isso significa que olhamos para o problema como se ele estivesse resolvido, procurando identificar tanto os elementos nele envolvidos como as relações entre eles. Dizemos comumente que a análise tem a ver com ser natural e o sintético (enunciado da lei ou do problema) tem a ver com ser artificial.
O raciocínio analítico é fundamental para resolver problemas de construção geométrica. A generalidade dos autores, que apresentam soluções para os problemas básicos que propõem, referem-se explicitamente aos métodos analíticos e sintéticos para cada problema.
Assim faz Charles Lutwidge Dodgson - romancista, contista, fabulista, poeta, desenhador, fotógrafo, matemático e reverendo anglicano britânico, que viveu de 1832 a 1898 e lecionou matemática (lógica) em Oxford, Christ College - mais conhecido pelo seu pseudónimo Lewis Carroll.
Há um livro, em português, editado em 2008 por RBA Coleccionables, S.A. que reúne, de C.L.D. "Um conto enredado" de 1880…… e "Problemas de Almofada criados durante as horas passadas acordado" de 1893…… . Deste livro, se transcreveu um problema na "dia-a-dia com a Matemática, Associação de Professores de Matemática, 2011/2012- Agenda do Professor" e que republicamos nesta página


Problema:     Num triângulo dado, traçar uma linha paralela à base de tal forma que os comprimentos dos segmentos dos lados intersetados entre esta e a base sejam, somados, iguais ao comprimento da base.
São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge BC= BD+CE\;$


Considerando que, para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.

  1. No problema resolvido temos os pontos dados $\;A, \;B, \;C\;$ e também os pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge BC= BD+CE\;$
  2. Nas condições do problema resolvido, como $\;BD=CE\;$,
    • a circunferência $(\;B, \;BD)\;$ de centro em $\;B\;$ e raio $\;BD\;$ interseta $\;AB\;$ em $\;D\;$ e $\;BC\;$ num outro ponto que designamos por $\;F;$
    • Do mesmo modo, a circunferência $(\;C, \;CE)\;$ de centro em $\;C\;$ e raio $\;CE\;$ interseta $\;AC\;$ em $\;E\;$ e $\;BC\;$ no ponto $\;F,\;$
    • já que $\;BD+CE= BC= BF+FC.\;$
  3. Por ser $\;BF=BD\;$ no triângulo $\;BFD\;$, $\;B\hat{D}F=B\hat{F}D\; = \;$ (pela Prop. 29 (Livro I, Elementos de Euclides), como $\;DE \parallel BC \;$) $\;= F\hat{D}E.\;$ De forma análoga, também $C\hat{E}F = F\hat{E}D\;$ (ângulos alternos internos)
    Por ser $\; B\hat{F}D\; = F\hat{D}E$, $\;FD\;$ bisseta o ângulo $\;B\hat{D}E.\;$ E, de modo análogo, $\;FE\;$ bisseta o ângulo $\; C\hat{E}D.\;$
    Se o ponto $\;F\;$, interseção de duas bissetrizes externas do triângulo $\;ADE\;$, é o centro de uma das circunferências ex-inscritas desse triângulo e está sobre a bissetriz do ângulo $D\hat{A}E$
  4. $\;F\;$ é um ponto equidistante dos três lados $\;DE, \;AD, \;AE\;$ que está sobre a base $\;BC\;$ do triângulo $\;ABC\;$
    e, assim ficamos a saber que, para resolver o nosso problema, bastaria determinar o ponto $\;F\;$ como pé em $\;BC\;$ da bissetriz do ângulo $Â$.


© geometrias, 19 de Junho de 2014, Criado com GeoGebra


Pode seguir os passos da construção (sintética) fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1, 2, ..., 6}.\;$

Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da construção.
  1. Começamos por bissetar o ângulo $\;C\hat{A}B\;$ com a reta $\;AF\;$, sendo $\;F\;$ o pé da bissetriz em $\;BC.\;$
  2. Tiramos por $\;F\;$ as perpendiculares a $\;AC\;$ e a $\;AB\;$, respetivamente $\;FB'\;$ e $\;FC'\;$
    Como $\;F\;$ é um ponto da bissetriz de $\; C\hat{A}B,\;$ $\;FB'=FC'.\;$
  3. A seguir, traçamos a circunferência de centro em $\;F\;$ que passa por $\;B'\;$ e $\;C'\;$. E tiramos por $\;F\;$ um outro raio $\;FA'\;$ perpendicular a $\;BC\;$. A perpendicular a $\;FA'\;$ que interseta $\;AB\;$ em $\;D\;$ e $\;AC\,$ em $\;E\;$ é paralela a $\;BC.\;$
  4. Os ângulos $\;A',\; B',\; C'\;$ são retos e $\;FA'=FB'=FC':\;$ $\;FD\;$ é hipotenusa comum de dois triângulos retângulos iguais ( $\;[C'FD] = [FA'D]\;$ ) e, por isso, $\;FD\;$ é bissetriz de $\;B\hat{D}E.\;$ De modo análogo, podemos ver que $\;FE\;$ é bissetriz de $\;C\hat{E}D.\;$
  5. Como $\;B\hat{F}D = F\hat{D}A'\;$ (por serem ângulos alternos internos) e $\;F\hat{D}A'= F\hat{D}B\;$ (por $\;FD\;$ ser bissetriz de $\;BDE\;$), então $\;B\hat{F}D = F\hat{D}B\;$ e, em consequência, $\;BD = BF.\;$
    De modo análogo, se prova que $\;CE = CF.\;$
  6. Em conclusão, $\;BC=BF+FC= BD+CE,\;$ como queríamos.