Mostrar mensagens com a etiqueta G.E. Martin. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta G.E. Martin. Mostrar todas as mensagens

13.5.16

Quadratura de um "crescente" (lúnula , Hipocrates)


Ao filósofo / médico / matemático grego Hipocrates de Cós (n. 460 A.C. em Cós - f. 370 A.C. em Lárissa) é atribuído o estudo de várias figuras limitadas por por dois arcos de circunferências (dos quais um é semicircunferência e outro é um arco de circunferência correspondente à corda diâmetro da anterior) a que chamou lúnulas. Nesta entrada, procuramos ver que uma determinada lúnula (crescente) tem área igual a um dado quadrado.

Usando noções comuns, definições e teoremas de "Os Elementos" de Euclides,
determinar um quadrado com a mesma área de uma dada lúnula que tem como diâmetro do primeiro arco (semicircunferência) o lado do quadrado inscrito na circunferência do segundo arco.
Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução/demonstração.




©geometrias, 12 maio 2016, Criado com GeoGebra



$\fbox{n=1}\;\;\;\;$ Apresenta-se a lúnula em estudo e da qual intentaremos uma quadratura.
$\fbox{n=2}\;\;\;\;$ As duas circunferências em causa são uma com centro em $\;O\;$ e diâmetro $\;AB\;$ e outra de centro em $\;C\;$ e raio$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ $\;AC\;$ circunscrita ao quadrado de lado $\;A, \;$ no caso $\;ABEF\;$
$\fbox{n=3}\;\;\;\;$ Na figura estão em evidência o quadrado $\;ADBC\;$ inscrito na circunferência de centro $\;O\;$ e diâmetro $\;AB,\;$ o$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ quadrado $\;ABEF\;$ inscrito na circunferência de centro $\;C\;$ e raio $\;AC\;$
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ O quadrado $\;ADBC\;$ está dividido em dois (quatro) triângulos retângulos. Tomemos o triângulo $\;ABC\;$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ retângulo em $\;C\;$ e retenhamos que a área do quadrado de lado $\;AB\;$ é igual à soma das áreas os quadrados $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ de lados $\;BC\;$ e $\;CA\;$ (I.47 - Teor. de Pitágoras)
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ Como $\;BC=CA\;$ podemos dizer que a área do quadrado de lado $\;AB\;$ é o dobro da área do quadrado de $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$lado $\;BC\;$ (ou $\;CA$ ): $\; — AB^2 = 2 \times BC^2.\;$
$$\;\mathfrak{area}[ABEF] = 2\times \mathfrak{area}[ADBC] \;$$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$ e, por isso, a razão entre as áreas dos círculos também será de 1 para 2: $$\;\mathfrak{area}(C,\;CA) = 2 \times \mathfrak{area}(O,\;OA) \;$$
$\fbox{n=4}\;\;\;\;$ Na figura ilustramos as diferenças de cada um dos círculos para os seus quadrados inscritos para esclarecer$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ que se retirarmos à área de $\;(C, \;CA)\;$ quatro áreas iguais a $\;(AMBOA]\;$ ficamos com a área do quadrado$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;[ABEF].\;$ De igual modo, acontece com $\;(O, \;OA)\;$ e $\;[ADBC].\;$
$\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(C,\;CA) - 4\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ABEF]\;\;$ que é o mesmo que
$\;\;\;\;\;\;\;\;\;\;\;\;\; 2\times \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(AMBOA] = 2\times \mathfrak{area} [ADBC],\;$ e dividindo por dois $\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(O,\;OA) - 2\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ADBC].\;$ E, porque
$\;\;\;\;\;\;\;\;\;\;\;\; \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(ADA] = \mathfrak{area}[ADBC],\;$ é obvio que $$\;\mathfrak{area}(AMBOA] = 2\times \mathfrak{area}(ADA].\; $$ $\;\;\;\;\;\;\;\;\;\;\;\;$Podemos concluir que $$\;\mathfrak{area}(AMBOA] = \mathfrak{area}(ADA] +\mathfrak{area}(DBD] .\; $$
$\fbox{n=5}\;\;\;\;$ Tirando $\;\mathfrak{area} (AMBOA] \;$ à semicircunferência $\;\mathfrak{area}(ADBO]\;$ ficamos com a $\;\mathfrak{area}(ADBMA(\;$ da lúnula Por $\;\;\;\;\;\;\;\;\;\;\;\;$outro lado, vimos que tirando $\;\mathfrak{area}(BCB] +\mathfrak{area}(CAC]\; $ à semicircunferência $\;\mathfrak{area}[AOCBCA)\;$ ficamos $\;\;\;\;\;\;\;\;\;\;\;\;$com o triângulo retângulo $\; \mathfrak{area}[ABC].\;$ Como iguais subtraídos de iguais são iguais (noção comum 3),$\;\;\;\;\;\;\;\;\;\;\;\;$ podemos concluir que $$\mathfrak{area}(ADBMA( = \mathfrak{area}[ABC]$$
$\fbox{n=6}\;\;\;\;$ E a área do triângulo $\;[ABC]\;$ é obviamente igual à área do quadrado $\;[AOCJ],\;$ por exemplo. Assim fica feita a $\;\;\;\;\;\;\;\;\;\;\;\;$quadratura do "crescente".



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.