Determinar a recta paralela a AC que divide o triângulo [ABC] em duas partes equivalentes.
A seguir, a construção de Mariana Sacchetti:
Cluzel & Robert. La Géometrie et ses applications. Enseignement Technique; Librairie Delagrave. Paris:1964
Num triângulo, os pontos médios dos lados, os pés das alturas e os pontos médios dos segmentos de reta que ligam os vértices ao ortocentro são pontos de uma mesma circunferência (são concíclicos)
31 março 2018, Criado com GeoGebra
A distância de um ponto qualquer $\;P\;$ de uma dada circunferência a uma corda dada $\;[AB]\;$ é o meio proporcional entre as distâncias de $\;P\;$ às tangentes à circunferência em $\;A\;$ e $\;B, \;$ extremos da corda dada
Problema: Sendo $\;D,\;E, \;F\;$ os pés das perpendiculares tiradas por $\;P\;$ à corda $\;AB\;$ e às tangentes à circunferência em $\;B, \;A\;$ é preciso provar que $$\frac{PE}{PD} = \frac{PD}{PF}$$
que é o mesmo que $$PD^2 = PE \times PF$$
23 março 2018, Criado com GeoGebra
Enunciado do problema (adaptado):
Num determinado setor circular $\;AOB\;$ de raio fixo, $\;r=AO=BO=CO\;$, é construído um círculo menor de raio variável, $\;x=OD\;$, com $\;D \in AO$. À medida que o raio menor aumenta, uma corda tangente ao círculo interno tirada pelo ponto $\;A\;$ determina uma região de área variável, na figura assinalada a vermelho (limitada por segmentos de reta $\;AT,\; OT\;$ e pelo arco $\;\widehat{DT}\;$ da circunferência $\;(O,\; x).\;$
Qual deve ser o raio $\;x\;$ do círculo interno para maximizar esta área?
Na figura abaixo apresentam-se inicialmente as etapas da construção que ilustra o enunciado do problema, a saber:
16 novembro 2017, Criado com GeoGebra
Para o raio $\;AO=4\;$ as soluções da equação $$x\sqrt{r^2-x^2}= 2x^2.arccos{\frac{x}{r}}$$ são $\;x \approx 1,57694 \vee x=4.$ Claro que para os valores $\;0,\;4\;$ de $\;x,\;$ os dois membros da equação anulam-se e não corresponde ao raio maximizante da área em estudo. □
Nesta entrada, embora todas as construções sejam feitas com régua e compasso, recorremos a operações algébricas, conceitos de função, derivada, etc.
Enunciado adaptado, construção e demonstração de Mariana Sacchetti
Dado um segmento de reta $\;AB\;$ de comprimento $\;a\;$ fixo, constrói-se com centro na perpendicular a $\;AB\;$ tirada por $\;B\;$ um círculo de raio variável $\;x\;$ tangente ao segmento de reta $\;AB\;$ no ponto $\;B\;$. Unindo o centro $\;C\;$ da circunferência com o ponto $\;A\;$, obtém-se o triângulo retângulo $\;ABC.\;$ Construa-se-se um quadrado com com dois vértices em $\;AB\;$, outro na hipotenusa AC e o quarto na circunferência de centro $\;C\;$ e a passar por $\;B\;$
Determinar
© geometrias, 26 outubro 2017, Criado com GeoGebra
Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um triângulo a um Crescente limitado por dois arcos circulares.
O enunciado do problema desta entrada é:
Demonstrar que um Crescente Vermelho (entre dois arcos) na figura é igual em área a um triângulo.
11 agosto 2017, Criado com GeoGebra
© geometrias. 28 de Fevereiro 2015, Criado com GeoGebra