Mostrar mensagens com a etiqueta Tetraedro. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Tetraedro. Mostrar todas as mensagens
11.12.16
14.10.16
23.7.15
Relações entre tetraedro e cubo inscritos numa mesma esfera.
As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)
Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.
Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.
- o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
- sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
- para o tetraedro inscrito, a aresta é $\;AD ;\;$
- para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
© geometrias. 23 de julho de 2015, Criado com GeoGebra
Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.
Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
Etiquetas:
(XIII: 13,
15),
comparações.,
construções,
Cubo,
Elementos,
Euclides,
Platão,
Teeteto,
Tetraedro,
volume
26.6.15
Livro XIII: Construção de um tetraedro inscrito numa esfera.
Proposição 13:
Construir uma pirâmide regular (ou tetraedro), inscrevê-la numa dada esfera e mostrar que o quadrado do diâmetro da esfera é uma vez e meia o quadrado do lado (aresta) da pirâmide.
Passos da construção:
- Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera (ou igual a ele) No nosso caso, tomámos mesmo um segmento que é o eixo da esfera gerada pelo semicírculo $\;(ADB)\;$
- Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=2.CB\;$ (Prop. 9 Livro VI (9.6))
- Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;AD\;$
- Tomámos um círculo $\;EFG\;$ de raio iguala $\;DC\;$ e tal que $\;HK\;$ é perpendicular a $\; AB \; $ tirada pelo centro $\;O\;$ do semicírculo $\;ADB\;$ e $\;HK= AC\;$ (de um modo mais geral só é preciso que $\;HK\;$ seja perpendicular ao plano do círculo $\;(EFG)\;$
- No caso da nossa construção, tomámos um ponto $\;E\;$ genérico da circunferência $\;(H, \;DC)\;$ que, por isso, pode mover-se sobre ela em que inscrevemos um triângulo equilátero determinámos $\;EFG\;$ tais que $\;EF = EG = FG\;$
- Finalmente, traçamos os 6 segmentos $\;FE, \;EG, \;FG, \;KE, \;KF, \;KG\;$ que são certamente arestas de uma pirâmide triangular cujas faces são os 4 triângulos $\;EFG, \;KEF, \;KEG, \; KFG\;$
© geometrias. 23 de junho de 2015, Criado com GeoGebra
-
Da construção, sabemos que
- sendo $\;AC=2CB \; \text{e}\; AB=AC+CB, \; \text{então}\; AB=3CB\;$
- o ângulo $\;ADB\;$ é um reto por estar inscrito num semicírculo, ou seja, o triângulo $\;ABC\;$ é retângulo em $\;D\;$
- sendo $\;CD\;$ é altura relativa à hipotenusa $\;AB\;$ do triângulo retângulo $\;ADB\;$ de catetos $\;AD\;$ e $\;DB\;$. O triângulo $\;ABC\;$ tem os ângulos iguais cada um a cada um, a cada um dos triângulos em que está dividido por $\;CD,\;$ a saber : $\;ACD,\;DCB \;$.
Por construção $\; \displaystyle \frac{AB}{BC} = 3 \;$ que nos permite dizer que $\; \displaystyle \frac{AB\times BC}{BC\times BC} = \frac{AD^2}{BC^2} =3\;$ ou que $\;AD^2= 3 \times BC^2 .$
(Note que estes resultados aparecem n'Os Elementos demonstrados geometricamente com recurso a figuras e operações como as de remover ou juntar (sem sobreposição) e retirar figuras congruentes ou iguais em área para obter novas figuras. É um bom exercício reconstruir esse processo, especialmente para os que parecem imediatos, vistos algebricamente, como é o último destes.) - A pirâmide triangular construída é regular:
- Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
Pela proposição 12, estudada no artigo anterior, garantimos que o quadrado de lado igual ao de um triângulo equilátero é triplo do quadrado do raio da circunferência em que se inscreve: No nosso caso, podemos escrever que $\;EF^2= 3\times KE^2 = 3 \times CD^2$.
Fica assim claro que, $\;EF^2 = AD^2\;$ por serem ambos iguais a $\;3 \times CD^2\;$ e, finalmente, podemos dizer que $\;EF=AD\;$.
A base $\;EFG\;$ da pirâmide construída é um triângulo equilátero de lado igual a $\;AD\;$ -
Por construção, $\;HK\;$ é tomada sobre a perpendicular ao plano de $\;(EFG)\;$ e, por isso é perpendicular a todas as retas desse plano que incidam em $\;H\;$, ou seja: os triângulos $\;KEH, \; KFH,\; KGH\,$ são triângulos retângulos em $\;H\;$, sendo os seus catetos, por construção, iguais a $\;CD=KE\;$ e a $\;AC\;$
Por isso, $\;KE^2 =KF^2=KG^2 = AC^2+ CD^2= AD^2$. Ou seja, os lados $\;KE,\;KF, \;KG\,$ destes triângulos retângulos são iguais $AD$ e iguais aos $\;EF, \;EG, \;FG\;$, para concluirmos que os triângulos $\;KEF, \;KFG, \;KGE,\; EFG\;$ são triângulos equiláteros de lados iguais a $\;AD\;$
- Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
- Falta agora provar que os vértices da pirâmide construída incidem numa superfície esférica igual à de diâmetro $\;AB\;$.
Por construção $\;HK=AC=2BC.\;$ Tome-se $\;L\;$ colinear com $\;H, \;K\;$ e tal que $\;HL=BC:\;$ Assim $\;KL=AB=AC+BC=3BC.\;$
Assim como $\; \displaystyle \frac{AC}{CD} = \frac{CD}{CB} , \;$ também $\;\displaystyle \frac{KH}{HE} = \frac{HE}{HL},\;$ já que $\;HK=AC, \; HE=CD, \; HL=CB \,$ e $\;KH\times HL=HE^2,\;$ para além de cada um dos ângulos $\;K\hat{H}E, E\hat{H}L\;$ ser reto, ficando garantido que o semicírculo de diâmetro $\;KL\;$ passa por $\;E\;$. Se considerarmos fixado o diâmetro $\;KL,\;$ no movimento volta inteira do semicírculo em torno de $\;KL\;$, o semicírculo passará pelos pontos $\;F,\;G\;$ já que $\;FL\;$ e $\;LG\;$ acompanham o movimento rigidamente e os ângulos em $\;F \;$ e em $\;G\;$ se tornam retos e a pirâmide é compreendida pela esfera dada já que para $\;KL, \;$ o diâmetro da esfera é igual ao diâmetro $\;AB\;$ da esfera dada e $\;KH\;$ foi construído igual a $\;AC \;$ e $\;HL\;$ igual a $\;CB.\;$ - Só nos falta provar que o quadrado do diâmetro da esfera é igual a uma vez e meia o quadrado do lado da pirâmide.
Como $\;AC=2\times CB, \;\;\; AB= 3 \times CB\;$ e $\;\displaystyle \frac{AB}{AC} = \frac{3}{2}\;$ ou $\; AB=1,5 \times AC.\;$
Ao mesmo tempo, $\; \displaystyle \frac{BA}{AC} =\frac{BA^2}{AD^2}\;$. Portanto $$\; \displaystyle \frac{BA^2}{AD^2} = \frac{3}{2}\;$$ ficando assim provado que o quadrado sobre o diâmetro $\;AB\;$ da esfera é uma vez e meia o quadrado sobre a aresta $\;AD.\;$ □
-
EUCLID’S ELEMENTS OF GEOMETRY
The Greek text of J.L. Heiberg (1883–1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus
B.G. Teubneri, 1883–1885
edited, and provided with a modern English translation, by
Richard Fitzpatrick
- David Joyce. Euclide's Elements
Subscrever:
Mensagens (Atom)