Mostrar mensagens com a etiqueta Tetraedro. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Tetraedro. Mostrar todas as mensagens

23.7.15

Relações entre tetraedro e cubo inscritos numa mesma esfera.


As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
  1. o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
  2. sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
  3. para o tetraedro inscrito, a aresta é $\;AD ;\;$
  4. para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
Em (XIII.13) vimos que $\;AB^2=\displaystyle \frac{3}{2}AD^2\;$ e, em (XIII.15), vimos que $\;AB^2=3DB^2\;$. Em consequência, de $\;\displaystyle \frac{3}{2}AD^2 = 3DB^2\;$ se retira que $\;AD^2=2DB^2,\;$ ou seja que $\;AD\;$ é o comprimento da diagonal de um quadrado de lado igual a $\;DB\;$. Assim vimos que a aresta de um tetraedro inscrito numa esfera de diâmetro dado tem comprimento igual à diagonal da face do cubo inscrito na mesma esfera.

© geometrias. 23 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.

Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

26.6.15

Livro XIII: Construção de um tetraedro inscrito numa esfera.



Proposição 13:
Construir uma pirâmide regular (ou tetraedro), inscrevê-la numa dada esfera e mostrar que o quadrado do diâmetro da esfera é uma vez e meia o quadrado do lado (aresta) da pirâmide.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera (ou igual a ele) No nosso caso, tomámos mesmo um segmento que é o eixo da esfera gerada pelo semicírculo $\;(ADB)\;$
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=2.CB\;$ (Prop. 9 Livro VI (9.6))
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;AD\;$
  4. Tomámos um círculo $\;EFG\;$ de raio iguala $\;DC\;$ e tal que $\;HK\;$ é perpendicular a $\; AB \; $ tirada pelo centro $\;O\;$ do semicírculo $\;ADB\;$ e $\;HK= AC\;$ (de um modo mais geral só é preciso que $\;HK\;$ seja perpendicular ao plano do círculo $\;(EFG)\;$
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ genérico da circunferência $\;(H, \;DC)\;$ que, por isso, pode mover-se sobre ela em que inscrevemos um triângulo equilátero determinámos $\;EFG\;$ tais que $\;EF = EG = FG\;$
  6. Finalmente, traçamos os 6 segmentos $\;FE, \;EG, \;FG, \;KE, \;KF, \;KG\;$ que são certamente arestas de uma pirâmide triangular cujas faces são os 4 triângulos $\;EFG, \;KEF, \;KEG, \; KFG\;$
Será a pirâmide assim construída um tetraedro com os 4 vértices $\;K, \;E, \;F, G\;$ incidentes na superfície esférica gerada por uma semicírcunferência de diâmetro $\;AB?\;$ Falta demonstrar que é! E demonstrar que $\;AB^2 = \displaystyle \frac{3}{2}.AD^2.\;$

© geometrias. 23 de junho de 2015, Criado com GeoGebra

Demonstração:
  1. Da construção, sabemos que
    1. sendo $\;AC=2CB \; \text{e}\; AB=AC+CB, \; \text{então}\; AB=3CB\;$
    2. o ângulo $\;ADB\;$ é um reto por estar inscrito num semicírculo, ou seja, o triângulo $\;ABC\;$ é retângulo em $\;D\;$
    3. sendo $\;CD\;$ é altura relativa à hipotenusa $\;AB\;$ do triângulo retângulo $\;ADB\;$ de catetos $\;AD\;$ e $\;DB\;$. O triângulo $\;ABC\;$ tem os ângulos iguais cada um a cada um, a cada um dos triângulos em que está dividido por $\;CD,\;$ a saber : $\;ACD,\;DCB \;$.
    Por ser $\;ABD \sim DAC, \; \;\;\displaystyle \frac{AB}{AD}= \frac{DA}{AC}, \;$ ou seja, verifica-se que $\;\; AD^2=AB\times BC$
    Por construção $\; \displaystyle \frac{AB}{BC} = 3 \;$ que nos permite dizer que $\; \displaystyle \frac{AB\times BC}{BC\times BC} = \frac{AD^2}{BC^2} =3\;$ ou que $\;AD^2= 3 \times BC^2 .$
    (Note que estes resultados aparecem n'Os Elementos demonstrados geometricamente com recurso a figuras e operações como as de remover ou juntar (sem sobreposição) e retirar figuras congruentes ou iguais em área para obter novas figuras. É um bom exercício reconstruir esse processo, especialmente para os que parecem imediatos, vistos algebricamente, como é o último destes.)
  2. A pirâmide triangular construída é regular:
    1. Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
      Pela proposição 12, estudada no artigo anterior, garantimos que o quadrado de lado igual ao de um triângulo equilátero é triplo do quadrado do raio da circunferência em que se inscreve: No nosso caso, podemos escrever que $\;EF^2= 3\times KE^2 = 3 \times CD^2$.
      Fica assim claro que, $\;EF^2 = AD^2\;$ por serem ambos iguais a $\;3 \times CD^2\;$ e, finalmente, podemos dizer que $\;EF=AD\;$.
      A base $\;EFG\;$ da pirâmide construída é um triângulo equilátero de lado igual a $\;AD\;$
    2. Por construção, $\;HK\;$ é tomada sobre a perpendicular ao plano de $\;(EFG)\;$ e, por isso é perpendicular a todas as retas desse plano que incidam em $\;H\;$, ou seja: os triângulos $\;KEH, \; KFH,\; KGH\,$ são triângulos retângulos em $\;H\;$, sendo os seus catetos, por construção, iguais a $\;CD=KE\;$ e a $\;AC\;$
      Por isso, $\;KE^2 =KF^2=KG^2 = AC^2+ CD^2= AD^2$. Ou seja, os lados $\;KE,\;KF, \;KG\,$ destes triângulos retângulos são iguais $AD$ e iguais aos $\;EF, \;EG, \;FG\;$, para concluirmos que os triângulos $\;KEF, \;KFG, \;KGE,\; EFG\;$ são triângulos equiláteros de lados iguais a $\;AD\;$
    A pirâmide construída tem as seis arestas iguais e as quatro faces triângulares iguais entre si, equiláteras e equiangulares.
  3. Falta agora provar que os vértices da pirâmide construída incidem numa superfície esférica igual à de diâmetro $\;AB\;$.
    Por construção $\;HK=AC=2BC.\;$ Tome-se $\;L\;$ colinear com $\;H, \;K\;$ e tal que $\;HL=BC:\;$ Assim $\;KL=AB=AC+BC=3BC.\;$
    Assim como $\; \displaystyle \frac{AC}{CD} = \frac{CD}{CB} , \;$ também $\;\displaystyle \frac{KH}{HE} = \frac{HE}{HL},\;$ já que $\;HK=AC, \; HE=CD, \; HL=CB \,$ e $\;KH\times HL=HE^2,\;$ para além de cada um dos ângulos $\;K\hat{H}E, E\hat{H}L\;$ ser reto, ficando garantido que o semicírculo de diâmetro $\;KL\;$ passa por $\;E\;$. Se considerarmos fixado o diâmetro $\;KL,\;$ no movimento volta inteira do semicírculo em torno de $\;KL\;$, o semicírculo passará pelos pontos $\;F,\;G\;$ já que $\;FL\;$ e $\;LG\;$ acompanham o movimento rigidamente e os ângulos em $\;F \;$ e em $\;G\;$ se tornam retos e a pirâmide é compreendida pela esfera dada já que para $\;KL, \;$ o diâmetro da esfera é igual ao diâmetro $\;AB\;$ da esfera dada e $\;KH\;$ foi construído igual a $\;AC \;$ e $\;HL\;$ igual a $\;CB.\;$
  4. Só nos falta provar que o quadrado do diâmetro da esfera é igual a uma vez e meia o quadrado do lado da pirâmide.
    Como $\;AC=2\times CB, \;\;\; AB= 3 \times CB\;$ e $\;\displaystyle \frac{AB}{AC} = \frac{3}{2}\;$ ou $\; AB=1,5 \times AC.\;$
    Ao mesmo tempo, $\; \displaystyle \frac{BA}{AC} =\frac{BA^2}{AD^2}\;$. Portanto $$\; \displaystyle \frac{BA^2}{AD^2} = \frac{3}{2}\;$$ ficando assim provado que o quadrado sobre o diâmetro $\;AB\;$ da esfera é uma vez e meia o quadrado sobre a aresta $\;AD.\;$ □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements