Mostrar mensagens com a etiqueta instrumentos. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta instrumentos. Mostrar todas as mensagens

7.4.16

Transporte de um ângulo: passos da construção: economia, método e razão. Existência.



A construção da entrada de 16 de Janeiro de 2014, intitulada
Com compasso e régua euclidianos, transferir distâncias
cria o conceito correspondente ao compasso actual, ao demonstrar que com circunferências (definidas por um ponto e um intervalo) e as retas (definidas por dois pontos) se podem transferir distâncias (segmentos), isto é construir um segmento congruente a outro. Este conceito de compasso, correspondente a uma série de operações com retas e circunferências, passa a ser usado em futuras construções.
A proposição I.23 dos "Elementos" trata da transferência de um ângulo. Pode enunciar-se: Dados um segmento $\,[AB]\;$ e um ângulo de vértice $\;D,\;$ e lados $\; DC, \; DE\;$ ou $\; \angle CDE\;$, construir um ângulo $\;\angle BAH\;$ congruente com $\;\angle CDE\;$
Habitualmente segue-se o esquema:
  1. $\;(D,\;r)\;$ e $\;(A, \; r)\;$ congruentes ($\;r\;$ qualquer)
    • $\;(D,\;r). \dot{D}C = {E}\;$
    • $\;(D,\;r). \dot{D}E = {F}\;$
    • $\;(A, \;r). \dot{A}B = {G}\;$
  2. $\;(G,\;EF)\;$
    • $\;(G,\;EF). (A,\;r|) = {\ldots, \;H}\;$
  3. $\;AH\;$
    • $\; AG =AH= DE=DF\;$ e
      $\; EF=GH\;$ -- cordas iguais correspondentes a arcos iguais de circunferências iguais (congruentes). $$\;(LLL) \rightarrow [GAH]=[EDF]\;$$ $$\angle BAH = \angle GAH = \angle EDF = \angle CDE$$
Resumindo: a transferência pedida exige quatro traçados: três circunferências (compasso novo) e uma reta (régua).


A construção que pode fazer a seguir com as ferramentas euclidianas (únicas fornecidas) segue o raciocínio que apresentámos e que se resume a transferir distâncias, como deve ter observado. Se não quiser fazer a construção, pode seguir as etapas da construção (baseadas no esquema descrito na entrada citada acima) fazendo variar os valores de $\; \fbox{n=i},\; i=1, 2, \ldots, \;6\; $





@geometrias, 7 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n. Procuramos determinar um ponto $\;H: \; \angle BAH = \angle CDE,\;$ usando só a circunferência e a reta, e a partir dos cinco pontos $\;A,\;B,\;C,\;D,\;E.$
  1. Partindo dos cinco pontos $\; A,\; B,\;C, \; D,\; E,\;$ começamos por transferir $\;AB\;$ para $\;\dot{D}C\;$ e $\;\dot{D}E\;$ a partir de $\;D\;$
    1. $(D,DA), \; (A, AD)$
      • (D,DA). (A, AD) --> P : ADP é um triângulo equilátero
    2. $\;(A,\;AB)\;$ e $\;AP\;$
      • $\;(A,\;AB).AP \rightarrow Q \;$ sendo $\;AQ= AB\;$
    3. $\;(P, PQ=PA+AQ)\;$ e $\;PD\;$
      • $\;(P, PQ=PA+AQ) . PD\; \rightarrow R$, sendo $\;PR=PD+DR =PQ=PA+AQ,\;$ é $\;DR=AB\;$
    1. $\;(D, \;DR)=(D, \;AB)\;$ e $\;DE, \; DC\;$
      • $\;(D, \;AB) . DC \rightarrow F \;$ sendo $\;DF=AB\;$
      • $\;(D, \;AB) . DE \rightarrow G \;$ sendo $\;DG=AB\;$
  2. Já temos $\;DCF=DEG= AB.\;$ Procuramos $\;H: \; BH=FG\;$ o que é o mesmo que transferir $\;FG\;$ para uma reta a passar e começando em $\;B\;$
    1. $\;(F, \;FB)\;$ e $\,(B, \;BF)\;$
      • $\;(F, \;FB) . (B, \;BF) \rightarrow S$
      • $\;BF=FS=SB \;$
    2. $\;(F, \;FG)\; $ e $\;SF\;$
      • $\;(F, \;FG) . \;SF \rightarrow T\;$ sendo $\;FT=FG\;$
    3. $\; (S, \; ST)\;$ e $\;SB\;$
      • $\; (S, \; ST) . SB \rightarrow U\;$ sendo $\;ST=SF+FT=SF+FG= SB+FG\;$ e $\;SU= SB+BU.\;$ E, em consequência, $\;BU=FG\;$ já que $\;ST=SU\;$
    4. $\;(A, \;AB)\;$ e $\;(B, \;BU)\;$
      • $\;(A, \;AB) . (B, \;BU) \rightarrow H\;$ sendo $\;BH=BU=FG\;$
      • E assim temos os ângulos $\;\angle BAH = \angle FDG =\angle CDE. \;\;\;\;\;\;\;\;\;\;$ □

    Comparando o trabalho feito com o compasso novo com este trabalho que recorre só ao compasso euclidiano, compreendemos um pouco melhor a genialidade na organização do estudo por Euclids, na construção de cada conceito (proposição-- problema de construção--, como prova de existência também de novas ferramentas). A partir de pontos, retas e circunferências a geometria de uma imensidão de construtíveis integrados… é um jogo que podemos jogar solitariamente, mas que partilhamos com prazer.


    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

12.1.14

Instrumentos euclidianos


As próximas entradas ilustrarão o uso dos instrumentos e métodos de construção euclidianos.
No Livro I dos Elementos, Euclides dá as seguintes definições:

I.Ponto é o, que não tem partes, ou o, que não tem grandeza alguma.
II. Linha é o, que tem comprimento sem largura.
III. As extremidades da linha são pontos.
IV. Linha recta é aquella, que está posta egualmente entre as suas extremidades.
...
XV. Círculo é uma figura plana, fechada por uma só linha, a qual se chama circumferencia: de maneira que todas as linhas rectas, que de um certo ponto existente no meio da figura, se conduzem para a circumferencia, são eguais entre si


e, mais adiante, apresenta-nos os seguintes postulados

I. Pede-se como cousa pessoal, que se tire de um ponto qualquer para outro qualquer ponto uma linha recta
II.E que uma linha recta determinada se continue em direitura de si mesma, até onde seja necessário.
III. E que com qualquer centro e qualquer intervallo se descreva um círculo

Estes postulados garantem todas as construções primitivas com as quais todas as construções dos Elementos de Euclides se podem compor. Constituem-se em regras do jogo das construções de Euclides, restringindo todas as construções às que podem ser feitas:com instrumentos "euclideanos": uma régua de arestas para traçar tanto quanto o desejemos uma reta determinada por dois pontos; um compasso que nos permite determinar uma circunferência de um dado centro e passando por um dado ponto.