Mostrar mensagens com a etiqueta problemas de construção. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta problemas de construção. Mostrar todas as mensagens

15.4.18

Circunferência tangente a três outras circunferências


Um exemplo de síntese num problema de construção cujos passos são sugeridos pela análise do problema


Problema: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respetivos raios $\;(A,a), \;(B,b), \;(C, c)\;$

15 abril 2018, Criado com GeoGebra


Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução de problemas de
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Nota (45 de F.G-M.).Há problemas de construção geométrica para os quais basta o recurso a um só teorema para acedermos à solução. Mas para a maioria dos problemas, a resposta não depende de um só resultado já conhecido. E, por isso, para resolver um problema é necessário recorrer a uma sucessão de problemas mais simples. Já percorremos longos caminhos construtivos em que cada passo dado não é mais do que um apoio para o passo seguinte até termos conseguido a solução do problema originalmente proposto. Apresentamos a seguir um problema de construção que analisamos para descobrir a sequência de problemas que é necessário resolver por uma ordem que é a inversa da que vamos seguir quando apresentamos em síntese.


Problema 46: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respectivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
46. Décrire une circonférence tangente à trois circonférences données
$\;A, B, C\;$

Consideremos o problema resolvido, isto é, suponhamos que temos determinada uma circunferência $\;(D, d)\;$ que é tangente a cada uma das circunferências $\;(A, a),\; (B, b), \; (C, c)\;$ dadas pelos respectivos (centro, raio). Consideremos, por exemplo, que $\;(A, a)\;$ é a de menor raio das circunferências dadas: $\;a < b, \;a < c \;$

A distância entre centros de circunferências tangentes é igual à soma dos seus raios e, assim, $\;DA= d+a,\; DB=d+b,\; DC= d+c.\;$ Uma circunferência de centro em $\;D\;$ e raio $\;DA=d+a\;$ é tangente à circunferência de centro em $\;B\;$ e raio $\;DB-DA=d+b-(d+a)=b-a\;$ e também à circunferência de centro em $\;C\;$ e raio $\;DC-DA=d+c-(d+a)=c-a.\;$ Se existir, a circunferência $\;(D, AD)\:$ é tangente a $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e passa por $\;A.$
Consideremos a semelhança (homotetia) entre as circunferências $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e tiremos pelo centro $\;E\;$ da homotetia uma tangente $\;EFG\;$ comum às duas, sendo pontos de tangência $ \;F\;$ e $\;G,\;$ respetivamente de $ \;(B, b-a)\;$ e $\;(C, c-a).\;$

Por isso, podemos dizer que precisamos de resolver o seguinte
Problema 47: Construir uma circunferência que passa por um ponto $\;A\;$ e é tangente a duas circunferências dadas $\;(B,b-a),\; (C, c-a)\;$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
47. Décrire une circonférence qui passe par un point $\;A\;$ et qui soit tangente à deux circonférences données
$\;(B, F)\;$ et $\;(C, G)\;$

A reta $\;EA\;$ intersectará a circunferência $\;(D,d)\;$ num ponto $\;H\;$ tal que $\;EA.EH=EF.EG,\;$ potência de $\;E\;$ relativamente à circunferência $\;(FGH)\;$ ou seja um ponto da circunferência $\;(D,d)\;$ fica determinado na intersecção de $\;EF\;$ com $\;(FGA).\;$
E o nosso problema depende da resolução do

Problema 48: Construir uma circunferência que passa por dois pontos $\;A,\; H\;$ dados e é tangente a uma das circunferências $\;(B, b-a)\;$ ou $\;(C, c-a)\;$ que se resume a construir uma circunferência que passe por três pontos dados $\;F,\;G, \;A.$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
48. Décrire une circonférence qui passe par deux points A, H donnés et qui soit tangente à une circonférence donnée

Ce troisième problème se ramène à ce quatrième : faire passer une circonférence par trois points donnés.

Nota (49a F.G.-M.) As indicações dadas são analíticas, desmontam o problema em vários, mas como cada resultado não é recíproco de nenhum dos outros, é preciso estudar cada um deles com cuidado, para não omitir alguma das soluções. Atente-se:
  1. Há uma só circunferência a passar por três pontos não colineares.
  2. Há duas circunferência a passar por dois pontos e tangente a uma outra circunferência.
  3. Há quatro circunferências a passar por um ponto e tangente a duas outras circunferências
  4. Há oito circunferências tangentes a três outras circunferências.
O método sintético expõe em primeiro lugar o problema mais simples que é o quarto e logo depois o terceiro, o segundo, e finalmente o problema geral, caminho inverso do seguido no método da exposição analítica percorrido, provavelmente seguido por François Viète e, como exemplo de simplificações sucessivas, apresentado por Georges RITT no seu Problèmes de Géometrie.

17.4.16

Novo problema de construção de paralelogramo de área igual à de um triângulo.


A Proposição (I.42) tratava do problema de construção de um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
Com recurso a essa construção I.42 e também a I.43 em que se mostrou que paralelas aos lados tiradas por qualquer ponto de diagonal de um paralelogramo, este fica dividido em quatro paralelogramos, dos quais dois são sempre iguais em área,
vamos resolver um novo problema de construção.

Proposição I.44 Problema:   Dados um segmento $\;AB\;$, um triângulo $\; \Delta PQR\;$ e um ângulo $\;\angle S\hat{T}U\;$, construir um paralelogramo $\;ABHI\;$ tal que $\;angle ABH = \angle STU\;$ e ainda $\;[ABHI]\; $ e $\;[PQR]\;$ sejam iguais em área.



©geometrias, 17 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor $\;\fbox{n=i}, i=0,1, 2, \ldots, 7\;$
  1. $\;n=0 \;\;\;AB, \; \Delta PQR , \; \angle STU \;$
  2. $\;n=1 \; \;\;$ Acrescentam-se
    • $\;R'\;$ na reta $\;AB\;$, de tal modo que $\;BR'=QR\;$
    • $\;(B, QP) . (R', PR) \rightarrow P'\;\;\;\;$ e, assim, $\; P'B=PQ, \; P'R'=PR\;$
    para $\;\Delta BR'P' =\Delta PQR\; $ (LLL) e, por isso, serem iguais em área.
  3. $\;n=2\; \;\;$ Acrescentam-se os pontos $\;C\;$ médio de $\;BR',\;$ e $\; S', \;U' \:$ tais que $\;BS'=BU'=BS\;$ e $\;S'U'=SU\;$ que, como vimos nas entradas anteriores, chegam para determinar um paralelogramo de área igual à área de $\;PQR\;$ e com um ângulo em $\; B\;$ igual a $\;\angle STU \;$ de lados $\;BC\;$ e sobre as retas $\;BU', \;$ paralela a $\;BC\;$ tirada por $\;P'\;$ e paralela a $\;BU'\;$ tirada por $\;C.\;$
  4. $\;n=3\; \;\;$ Acrescentam-se os segmentos $\;BE,\;CD,\;ED,\;$ em que $\;D, \;E\;$ são intersecções das retas referidas anteriormente
  5. $\;n=4\; \;\;$ Acrescenta-se o paralelogramo $\;ABEFP\;$ com um lado -$\;BE\;$ - comum a $\;BCDE\;$
  6. $\;n=5\; \;\;$ A reta $\;BF\;$ interseta a reta $\;DC\;$ em $\;G.\;$ E acrescenta-se o segmento $\;FG\;$ que passa por $\;B\,$
  7. $\;n=6\; \;\;$ As retas $\;EB,\;FA\; $ intersectam a paralela a $\;AB\,$ tirada por $\;G\;$ em, respectivamente, $\;H, \;I.\;$ Ficam assim definidos vários novos paralelogramos, de que nos interessam os seguintes: $\;BCGH, \; ABHI,\; FDGI\;$
  8. $\;n=7\; \;\;$ Do paralelogramo $\;FDHI,\;\;FG\;$ é uma das suas diagonais, e $\;ABHI, DEBG\;$ estão nas condições consideradas em (I:43, da última entrada) para serem iguais em área. Fica assim demonstrado que o paralelogramo $\;ABHI,\;$ para além de ter $\,AB\;$ como lado, é igual em área ao triângulo $\;\Delta PQR\;$        □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

11.2.16

Circunferência por 2 pontos com tangentes iguais tiradas por 2 ponto distintos


Problema:
São dados quatro pontos $\;A,\;B,\;C,\;D.\;$
Construir a circunferência que passa por $\;A,\;B\;$ e cujas tangentes tiradas por $\;C\;$ e por $\;D\;$ têm o mesmo comprimento.

©geometrias. 10 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Este é mais um dos problemas que se resolve, analisando-o como se o tivessemos resolvido. Claro que, como temos dois pontos $\;A, \;B\;$ da circunferência-solução, sabemos que o seu centro $\;O\;$ é um ponto equidistante de $\;A\;$ e de $\;B\;$.
Também sabemos que $\;CH =DG\;$ se H for o ponto de tangência da tangente tirada por $\;C\;$ e $\;G\;$ for o ponto de tangência da tangente à circunferência tirada por $\;D\;$ e sabemos que $\;OG=OH\;$ (raios) e que $\;OG \perp GD\;$ e $\;OH \perp HC.\;$. E, em consequência, serão iguais os triângulos $\;[CHO]\;$ retângulo em $\;H\;$ e $\;[DGO]\;$ retângulo em $\;G\;$. Assim sendo, serão iguais as hipotenusas $\;OC = OD\;$. Ou seja $\;O\;$ é um ponto equidistante dos pontos dados, $\;C\;$ e $\;D\;$, da mediatriz de $\;CD\;$
Deste modo, $\;O\;$ fica determinado como interseção das mediatrizes de $\;AB\;$ e de $\;CD\;$ e a circunferência requerida tem este centro $\;O\;$ e passa por $\;A\;$

147. On donne quatre points A, B, C, D. Construire un cercle passant par A et B et tel que les tangentes issues de C et D soient égales.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947 >

4.2.16

Circunferência tangente a outra e a uma reta num dado ponto.


Problema:
É dada uma uma reta $\;t\;$ tangente em $\;T\;$ a uma circunferência $\;c\;$ dada. É ainda dado um outro ponto $\;A\;$ dessa tangente $\;t.\;$
Construir uma circunferência tangente à circunferência $\;c\;$ e à reta $\;t \;$ no ponto $\;A.\;$

©geometrias. 3 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor na direita baixa da janela de visuaização.



Na figura correspondente ao problema resolvido. tem-se uma circunferência $\;(O')\;$ em que $\;O'\;$ é o quarto vértice de um trapézio retângulo $\;[OTAO']\;$. Como $\;t\,$ é tangente comum à duas circunferências exteriormente: a $\;c =(O)\;$ em $\;T\;$ e em $\;A\;$. Como o os segmentos das tangentes a uma circunferência tiradas por um ponto são iguais, a tangente exterior a $\;c\;$ tirada pelo ponto $\;M\;$ médio de $\;AT\;$ resolve o problema já que permite determinar o ponto de tangência $\;I\;$ comum às duas circunferências. $\;TI\;$ é perpendicular a $\;OM\;$ e $\;OI\;$ interseta a perpendicular a $\;t\;$ em $\;A\;$ em $\;O'\;$, centro da circunferência que procuramos: $\;MT=MI=MA\;$ e $\; IO'=O'A .\;$

154. On donne un cercle C, une tangente T à ce cercle au point A et sur cette droîte un point A'. Construire un cercle tangent au cercle C, et à la droîte T au point A'.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

31.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (2)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos à mesma distância de uma dada reta $\;r.\;$
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 31 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Se $\;A,\;B\;$ estão à mesma distância de $\;r, \;$ $\;AB \parallel r.\;$ O centro da circunferência que passa por $\;A,\;B\;$ é um ponto da mediatriz de $\;AB \;$ que intersecta $\;r\;$ em $\;D.\;$ Como a mediatriz de $\;AB\;$ é perpendicular a $\;AB\;$ também é perpendicular à sua paralela $\;r.\;$ Por isso o ponto $\;D\;$ é o ponto de tangência da circunferência que passa por $\;A, \;B\;$ e é tangente a $\;r.\;$ Assim o centro da circunferência que procuramos é o ponto comum a $\;CD\;$ e a mediatriz de $\;AD\;$ ou de $\;BD\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

26.3.15

Elementos: álgebra geométrica (Prop. XI do Livro II)


Continuando:

Livro II - PROP. XI. PROB.

Dividir uma linha reta de sorte que o retângulo de tôda e de uma parte seja igual ao quadrado da outra parte ou, de outro modo, Dado um segmento de reta $\;AB,\;$ determinar um ponto $\;H\;$ que o divide de tal modo que o retângulo de lados iguais a $\;AB\;$ e $\;BH;$ seja igual em área ao quadrado de lado $\;AH\;$ $$AB \times BH = AH^2 ,$$
Passos da construção:
  1. (46.1) - Construímos o quadrado de lado $\;AB\; - ACDB \;$
  2. (10.1) - Determinamos $\;E\;$ que divide $\;AB\;$ em partes iguais na interseção de $\;AC\;$ com a reta definida pelos pontos de interseção das circunferências $\;(A, AC),\; (C, CA)\;$
  3. (Post. 1.1) - Traçamos a reta $\;EB\;$
  4. (3.1) Determinamos sobre a reta $\;AC\;$ o ponto $\;F\;$ de tal modo que $\;EF=EB\;$ um dos pontos de interseção de $\;AC\;$ com $\;(E, EB)\;$ (Post 3)
  5. (46.1) - Construímos o quadrado de lado $\;AF\;$ para o lado de $\;B\;$ - $\; AFGH\;$ em que o vértice $\;H\;$ é um ponto de $\;AB\;$, entre $\;A\;$ e $\;B\;$
  6. O ponto $\;H\;$ assim determinado por construção é o ponto que procuramos. Resta provar que o retângulo de lados $\;AB\;$ e $\;BH\;$ é igual em área ao quadrado de lado $\;AH\;$ - $\;AFGH\;$



© geometrias. 26 de Março 2015, Criado com GeoGebra

Se precisar, clique nos botões "□ -mosta/oculta" para ver a construção e dar realce a figuras importantes na demonstração

Prova:
  1. Porque $\;AC\;$ está dividida em duas partes iguais por $\;E\;$ que se prolonga em reta por $\;AF\;$, nas condições de (6.2), o retângulo $\;CFGK\;$ de lados $\;CF\;$ e $\;FA\;$ acrescentado do quadrado de lado $\;AE\;$ é igual em área ao quadrado de lado $\;EF.\;$
  2. Como $\;EF=EB, \;$ o retângulo $\;CFGK\;$ acrescentado do quadrado de lado $\;AE\;$ também é igual ao quadrado de lado $\;EB\;$
  3. Como o ângulo $\;E\hat{B} A\;$ é ângulo do quadrado $\;ACDB\;$, reto, pelo Teorema de Pitágoras (47.1), o quadrado de lado $\;AB\;$ acrescentado do quadrado de lado $\;AE\;$ é igual ao quadrado de lado $\;EB\;$
  4. Removendo o mesmo quadrado de lado $\;AE\;$ às duas figuras construídas iguais ao quadrado de lado $\;BE,\;$ ou de lado $\;EF\;$, ficamos a saber que o retângulo de lados $\;FC, \;FA=AH\;$ é igual ao quadrado de lado $\;AB\;$<\li>
  5. O retângulo $\;FCKG\;$ é o retângulo $\;FC, \;FA\;$, por ser $\;AF=FG\;$ é igual em área ao quadrado de lado $\;AB\;$
  6. Se removermos $\;ACKH\;$
    • ao retângulo $\;FCKH\;$ sobra-nos o quadrado de lado $\;AH\;$
    • ao quadrado $\;ACDB\;$ sobra-nos $\;HKDB,\;$ (de lados iguais a $\;AB\;$ e $\;HB\;$)
    Ou seja, como $\;FCKG\;$ e $\;ACDB\;$ são iguais em área, então os restos $\;FAHG\;$ e $\;HKDB\;$ são iguais em área. □
Fica assim provado que o ponto $\;H\;$ de $\;AB\;$ determinado conforme construção acima feita, divide $\;AB\;$ em duas partes $\;AH\;$ e $\;HB\;$ tais que o retângulo do todo por uma das partes é igual em área ao quadrado da outra parte: $$ AB \times HB = AH^2 $$ $$\mbox{ou}\;\;\;\frac{AB}{AH}=\frac{AH}{HB} \;\;\;\mbox{ou}\;\;\; \frac{AH}{HB}=\frac{AB}{AH} $$


    Livro I
    PROP. XXXVI. TEOR.
    Os paralelogramos, que estão postos sôbre bases iguais, e entre as mesmas paralelas, saão iguais
    PROP. X. PROB.
    Dividir em duas partes iguais uma linha reta de um comprimento dado.
    POSTULADO I
    Pede-se, como cousa possíve, que se tire de um ponto qualquer para outro qualquer ponto uma linha reta.
    PROP. III. PROB.
    Dadas duas linhas retas desiguais, cortar da linha maior uma parte igual à linha menor.
    POST III
    (Pede-se, como cousa possíve,)E que com qualquer centro e qualquer intervlao se descreva um círculo.
    PROP. XLVII. TEOR.
    Em todo o triângulo retângulo o quadrado feito sôbre o lado oposto ao ângulo reto, é igual aos quadrados formados sôbre os outros lados, que fazem o mesmo ângulo reto
    AXIOMA III
    E se de cousas iguais se tirarem outras iguais, os restos serão iguais .......................................
    Livro II
    PROP.VI. PROB
    Se uma linha reta fôr dividida em duas partes iguais, e em direitura com ela se puser outra reta, será o retângulo compreendido pela reta tôda e mais a adjunta, e pela mesma adjunta juntamente com o quadrado da metade da primeiro igual ao quadrado da reta, que se compõe da mesma metade, e da outra reta adjunta.


  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000

13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.

3.7.14

Resolver um problema de construção, usando análise e síntese (6)


Problema:
Construir um quadrilátero convexo de que conhecem os comprimentos dos quatro lados e a amplitude do ângulo formado por dois lados não consecutivos.
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Com o problema resolvido, teríamos um trapézio $\;[ABCD]\;$ de lados $\;AB=a, \;BC=b, \; CD=c,\;DA=d, \;$ e sendo $\;\alpha\;$ o ângulo formado pelas duas retas $\;AB\;$ e $\;CD\;$. Uma paralela a $\;AB\;$ tirada por $\;D\;$ fará com $\;DC \;$ um ângulo de amplitude $\;\alpha\;$. Se tomarmos $\;E\;$ para o lado de $\;B\;$ sobre essa paralela a $\;AB\;$ tirada por $\;D\;$ de tal modo que $\;DE=AB\;$, $\;[ADEB]\;$ é um paralelogramo
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise do problema resolvido. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 3 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, sugere-nos que o quadrilátero $\;[ABCD]\;$ requerido se pode reconstruir a partir de um triângulo $\;[CDE]\;$ sendo $\;C\hat{D}E = \alpha, \; CD=c,\; DE=a.\;$
  2. Começamos por tomar um ponto $\;C\;$ qualquer no plano.
    E tomamos para $\;D\;$ um ponto qualquer da circunferência de raio $\;c\;$ e centro em $\;C\;$
  3. Tomamos $\;DC\;$ para lado de um ângulo de amplitude $\;\alpha\;$, e construímos outro lado a partir de $\;D\;$. Marcamos $\;E\;$ sobre esse segundo lado à distância $\;a\;$ de $\;D\;$
  4. $\;B\;$ estará na interseção das circunferências $\; (C, \;b)\;$ e $\;(E,\;d)\;$
  5. A paralela a $\;DE\;$ tirada por $\;B\;$ interseta a paralela a $\;BE\;$ tirada por $\;D\;$ no ponto $\;A\;$
  6. O quadrilátero $\;[ABCD]\;$ assim obtido satisfaz as condições requeridas no enunciado do problema. □
Variando os comprimentos dos lados, constatará que o problema nem sempre tem solução.

28.6.14

Resolver problema de construção, usando análise e síntese (4)


Problema:     Construir um triângulo isósceles de que se conhecem o circulo circunscrito e a soma da base com a altura correspondente.
Th. Caronnet, Exércices de Géométrie. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
  1. Suponhamos o problema resolvido: Teremos um triângulo isósceles $\;[ABC]\; (AB=AC),\;$ inscrito no círculo circunscrito $\;(O)\;$ dado e tal que a altura $\;AD=h\;$ e a base $\;BC=a\;$ têm soma dada $\;s=a+h.\;$
    • Num triângulo isósceles a altura $\;AD\;$ bisseta a base $\;BC,\;$ por isso passa pelo circuncentro $\;O\;$. Podemos escrever $\;AD+2BD=s.\;$ Quando prolongamos $\;AD\;$ até $\;E\;$ tal que $\;DE=BC,\;$ temos $\;AE=s\;$ e $\;2BD=DE,\;$ donde $\;\displaystyle \frac{BD}{BE} =\frac{1}{2}.$
    • Se prolongarmos $\;EB\;$ até encontrar no ponto $\;F\;$ a tangente a $\;(O)\;$ tirada por $\;A\;$, temos um novo triângulo $\;[EAF]\;$, retângulo em $\;A\;$, que é obviamente semelhante ao triângulo $\;[EDB]: \;\;\; \displaystyle \frac{AF}{AE}=\frac{DB}{DE} = \frac{1}{2};\;\;$ $\;\;AE=s\;$ e $\;\displaystyle AF=\frac{s}{2}.\;$
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 28 de Junho de 2014, Criado com GeoGebra



  1. É dado um segmento de comprimento $\;s=a+h\;$ e uma circunferência de centro $\;O\;$ circunscrita do triângulo procurado.
  2. Assim, começamos por tomar para vértice $\;A\;$ um ponto qualquer da circunferência dada e traçamos o diâmetro que passa por $\;A\;$ e contém a altura $\;h\;$ relativa a $\;a.\;$.
  3. De acordo com o sugerido na análise feita, interessa determinar o ponto $\;E\;$, desse diâmetro tal que $\;AE=a+h\;$: $\;AO.(A,s).\;$
  4. E, em seguida, determinamos o ponto $\;F\;$ da tangente a $\;(O)\;$ tirada por $\;A\;$ e à distância $\;\displaystyle \frac{s}{2}\;$ de $\;A.\;$
  5. A reta $\;EF\;$ interseta a circunscrita $\;(O\;)\;$, para os dados da nosso problema, por exemplo, $\;B\;$. A perpendicular a $\;AE\;$ (ou paralela a $\;AF\;$) interseta $\;(O)\;$ num ponto $\;C\;$, para além de $\;B\;$ e $\;AE\;$ em $\;D\;$. O triângulo $\;[ABC]\;$ de altura $\;AD\;$ é uma das soluções do problema: Como, por construção, $\;O \in AE,\;$ e $\;AE\perp BC, \;$ então $\;AD=DB\;$. Assim fica provado que $\;[ABC]\;$ está inscrito em $\;(O)\;$ e é isósceles. □
  6. Outra solução, será o triângulo $\;[AB_1C_1]\;$ de altura $\;AD_1\;$ e base $\;B_1C_1\;$
Para cada $\;A\;$ de $\;(O)\;$ haverá duas soluções, para os dados que se mostram inicialmente. Fazendo variar o comprimento do segmento $\;s\;$ pode ver em que condições há 0, 1 ou 2 soluções para o problema

26.6.14

Resolver problema de construção, usando análise e síntese (3)


Problema:     Num dado triângulo, traçar uma linha paralela à base de tal forma que se se traçarem a partir dos seus extremos linhas paralelas aos lados até cortarem a base, somadas meçam o dobro que a linha inscrita. (31/12/1881)
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores $\;2\;$de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$
  1. São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;C'\;$ sobre $\;AB\;$ e $\;B'\;$ sobre $\;AC\;$, de tal forma que $\;B'C' \parallel BC \wedge C'E+B'D = 2\times B'C',\;$ sendo $\;D, \;E\;$ pontos de $\;BC\;$ e $\;B'D \parallel AB\;$ e $\;C'E \parallel AC. \;$
  2. Supor que o problema está resolvido é supor que $\;B'C'\;$ está situada de tal forma que $\;B'D\;$ e $\;C'E\;$, paralelas aos lados, somados dêem $\;2B'C'$.
    De acordo com a proposição 34 do Livro I dos Elementos de Euclides
    $\;B'D =C'B\;$ e $\;C'E=B'C\;$ e portanto $\;B'C + C'B = 2B'C'$.
    E há um ponto $\;L\;$ de $\;B'C'\;$ que o divide em duas partes sendo uma igual a metade de $\;B'C\;$ e outra igual a metade de $\;C'B.\;$ Se deteminarmos este ponto $\;L,\;$ por ele passa uma única paralela a $\;BC$...

  3. A construção (sintética, a seguir) está ilustrada para os valores $\;3,\; 4\;$ de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$

    © geometrias, 25 de Junho de 2014, Criado com GeoGebra



    Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta $\;B'C'\;$ .
  4. Para determinar o ponto $\;L\;$ sobre $\; B'C'\;$ paralela a $\;BC,\;$ de tal modo que $\;2LC'=C'B\;$ e $\;2LB'=B'C \;$ (i.e. $\;2(LC'+LB')= 2C'B' =C'B+B'C = B'D+C'E\;$ ), podemos usar um ponto $\;F\;$ qualquer de $\;AB\;$ (ou de $\;AC\;$) e por ele tirar uma paralela a $\;BC.\;$
  5. Depois é só tomar $\;G\;$ sobre essa paralela de tal modo que $\;2FG =FB\;$ e $\;L\;$ estará sobre a reta $\;BG.\;$ Claro que, fazendo o mesmo para o lado $\;AC,\;$ $\;L\;$ estará sobre $\;CK,\;$ estando $\;K\;$ sobre uma paralela a $\;BC\;$ tirada por um ponto $\;H\;$ de $\;AC\;$ sendo $\;2KH=HC.\;$ $\;L\;$ é único $\;CK.BG \;$ e $\;B'C'\;$ é a única paralela a $\;BC \;$ tirada por $\; L$
  6. São semelhantes os triângulos $\;[FBG]\;$ e $\;[C'BL]\;$ e os lados opostos ao ângulo $\;\hat{B}\;$ comum são homólogos e $\;BC' = 2C'L,\;$ já que por construção $\;FB=2FG.\;$ Do mesmo modo, se mostra que $\;2LB'=B'C\;$ □
O ponto $\;F\;$ pode tomar as diversas posições sobre $\;AB.\;$ Verá que a variação de $\;F\;$ sobre $\;AB\;$ não afeta a posição de $\;L.\;$ No caso da nossa construção, quando $\;F\;$ toma a posição de $\;C',\;$ $K\;$ toma a posição de $\;B',\;$ $\;G\;$ e $\;K\;$ coincidem com $\;L.\;$ Os pares de arcos iguais (centrados em $\;F\;$ e $\;M,\;$ e em $\;H\;$ e $\;N$)   acompanham a deslocação de $\;F\;$ e ilustram as relações estabelecidas.

19.6.14

Resolver problemas de construção, usando análise e síntese (1)


Muitas vezes, um problema é construído a partir da sua solução, feito pela observação de resultados de operações sobre ela, ou transformações dela, de que se não deixa rasto. Por isso, muito frequentemente, um problema não é um verdadeiro problema (desafio) para quem apresenta o seu enunciado. A resolução de problemas faz parte da essência da aprendizagem, vital para o desenvolvimento do raciocínio reconstrutivo
Quando olhamos para um problema, o mais natural é não vermos a sua solução até porque ela pode estar escondida num detalhe de que só tomamos conhecimento quando decompomos o problema em partes (quando fazemos a análise da substância do dito) e isso significa que olhamos para o problema como se ele estivesse resolvido, procurando identificar tanto os elementos nele envolvidos como as relações entre eles. Dizemos comumente que a análise tem a ver com ser natural e o sintético (enunciado da lei ou do problema) tem a ver com ser artificial.
O raciocínio analítico é fundamental para resolver problemas de construção geométrica. A generalidade dos autores, que apresentam soluções para os problemas básicos que propõem, referem-se explicitamente aos métodos analíticos e sintéticos para cada problema.
Assim faz Charles Lutwidge Dodgson - romancista, contista, fabulista, poeta, desenhador, fotógrafo, matemático e reverendo anglicano britânico, que viveu de 1832 a 1898 e lecionou matemática (lógica) em Oxford, Christ College - mais conhecido pelo seu pseudónimo Lewis Carroll.
Há um livro, em português, editado em 2008 por RBA Coleccionables, S.A. que reúne, de C.L.D. "Um conto enredado" de 1880…… e "Problemas de Almofada criados durante as horas passadas acordado" de 1893…… . Deste livro, se transcreveu um problema na "dia-a-dia com a Matemática, Associação de Professores de Matemática, 2011/2012- Agenda do Professor" e que republicamos nesta página


Problema:     Num triângulo dado, traçar uma linha paralela à base de tal forma que os comprimentos dos segmentos dos lados intersetados entre esta e a base sejam, somados, iguais ao comprimento da base.
São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge BC= BD+CE\;$


Considerando que, para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.

  1. No problema resolvido temos os pontos dados $\;A, \;B, \;C\;$ e também os pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge BC= BD+CE\;$
  2. Nas condições do problema resolvido, como $\;BD=CE\;$,
    • a circunferência $(\;B, \;BD)\;$ de centro em $\;B\;$ e raio $\;BD\;$ interseta $\;AB\;$ em $\;D\;$ e $\;BC\;$ num outro ponto que designamos por $\;F;$
    • Do mesmo modo, a circunferência $(\;C, \;CE)\;$ de centro em $\;C\;$ e raio $\;CE\;$ interseta $\;AC\;$ em $\;E\;$ e $\;BC\;$ no ponto $\;F,\;$
    • já que $\;BD+CE= BC= BF+FC.\;$
  3. Por ser $\;BF=BD\;$ no triângulo $\;BFD\;$, $\;B\hat{D}F=B\hat{F}D\; = \;$ (pela Prop. 29 (Livro I, Elementos de Euclides), como $\;DE \parallel BC \;$) $\;= F\hat{D}E.\;$ De forma análoga, também $C\hat{E}F = F\hat{E}D\;$ (ângulos alternos internos)
    Por ser $\; B\hat{F}D\; = F\hat{D}E$, $\;FD\;$ bisseta o ângulo $\;B\hat{D}E.\;$ E, de modo análogo, $\;FE\;$ bisseta o ângulo $\; C\hat{E}D.\;$
    Se o ponto $\;F\;$, interseção de duas bissetrizes externas do triângulo $\;ADE\;$, é o centro de uma das circunferências ex-inscritas desse triângulo e está sobre a bissetriz do ângulo $D\hat{A}E$
  4. $\;F\;$ é um ponto equidistante dos três lados $\;DE, \;AD, \;AE\;$ que está sobre a base $\;BC\;$ do triângulo $\;ABC\;$
    e, assim ficamos a saber que, para resolver o nosso problema, bastaria determinar o ponto $\;F\;$ como pé em $\;BC\;$ da bissetriz do ângulo $Â$.


© geometrias, 19 de Junho de 2014, Criado com GeoGebra


Pode seguir os passos da construção (sintética) fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1, 2, ..., 6}.\;$

Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da construção.
  1. Começamos por bissetar o ângulo $\;C\hat{A}B\;$ com a reta $\;AF\;$, sendo $\;F\;$ o pé da bissetriz em $\;BC.\;$
  2. Tiramos por $\;F\;$ as perpendiculares a $\;AC\;$ e a $\;AB\;$, respetivamente $\;FB'\;$ e $\;FC'\;$
    Como $\;F\;$ é um ponto da bissetriz de $\; C\hat{A}B,\;$ $\;FB'=FC'.\;$
  3. A seguir, traçamos a circunferência de centro em $\;F\;$ que passa por $\;B'\;$ e $\;C'\;$. E tiramos por $\;F\;$ um outro raio $\;FA'\;$ perpendicular a $\;BC\;$. A perpendicular a $\;FA'\;$ que interseta $\;AB\;$ em $\;D\;$ e $\;AC\,$ em $\;E\;$ é paralela a $\;BC.\;$
  4. Os ângulos $\;A',\; B',\; C'\;$ são retos e $\;FA'=FB'=FC':\;$ $\;FD\;$ é hipotenusa comum de dois triângulos retângulos iguais ( $\;[C'FD] = [FA'D]\;$ ) e, por isso, $\;FD\;$ é bissetriz de $\;B\hat{D}E.\;$ De modo análogo, podemos ver que $\;FE\;$ é bissetriz de $\;C\hat{E}D.\;$
  5. Como $\;B\hat{F}D = F\hat{D}A'\;$ (por serem ângulos alternos internos) e $\;F\hat{D}A'= F\hat{D}B\;$ (por $\;FD\;$ ser bissetriz de $\;BDE\;$), então $\;B\hat{F}D = F\hat{D}B\;$ e, em consequência, $\;BD = BF.\;$
    De modo análogo, se prova que $\;CE = CF.\;$
  6. Em conclusão, $\;BC=BF+FC= BD+CE,\;$ como queríamos.

8.6.14

Resolver problema de construção usando uma dilação rotativa


Problema:     Imagine dois mapas de Portugal continental em escalas diferentes mas de tal modo que um deles fique inteiramente contido no outro.Prove que existe um e um só ponto do território continental português que fica, na representação nos dois mapas, exactamente sobreposto. Para facilitar uma ilustração do problemas, pode supor que Portugal continental é exactamente um rectângulo.
assim enunciado e proposto por Eduardo Veloso em "Simetria e Transformações Geométricas",GTG APM.Lisboa: 2012


A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas
  1. Estão dados na figura dois retângulos de vértices $\;[ABCD]\;$ e $\;[DFGH]\;$ semelhantes, no sentido de que, para quaisquer dois pontos $\;P, \;Q\;$ no retângulo $\;[ABCD]\;$, há dois pontos $\;P', \;Q'\;$ no retângulo $\;[EFGH]\;$ tais que a razão $\;\displaystyle \frac{PQ}{P'Q'}\;$ é constante (invariável).
    No caso, a figura obviamente sugere que $$\;\displaystyle \frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} =\frac{AB}{GH}= ... \;$$ se forem semelhantes os dois retângulos.
    Consideremos a semelhança $\;\cal{S}\;$ para a qual $\; C \mapsto G, \; D \mapsto H, ...\;$
    Se $\;AB \parallel EF\;$ o ponto comum aos dois retânguos sobrepostos seria o centro de uma homotetia, exatamente a interseção $\;AE.BF =CG.DH\;$ e o problema estava resolvido. Não é o caso da nossa figura.


  2. © geometrias, 8 de Junho de 2014, Criado com GeoGebra


    Clique no botão "Resolução" que seguir a nossa resolução.

  3. Uma transformação de semelhança é sempre a composta de uma homotetia com uma isometria. A figura dos dois retângulos sugere-nos uma rotação que transforme, por exemplo $\;[EFGH]\;$, num retângulo $\;[E'F'G'H']\;$ para o qual $\; E'F' \parallel H'G' \parallel CD \parallel AB\;$ seguida de uma homotetia que transforme $\;[E'F'G'H']\;$ em $\;[ABCD]\;$.
    Como sabemos, há muitas semelhanças possíveis compostas de rotações (de vários centros e ângulos de rotação) com homotetias de razão $\:\displaystyle \frac{AB}{EF} = \frac{BC}{FG}=\frac{CD}{GH}= \frac{DA}{HE}\;$(com centros diferentes).
    Qualquer rotação deixa invariante o seu o centro e qualquer homotetia deixa invariante o seu centro. Para que haja um ponto comum aos dois mapas sobrepostos é preciso que a semelhança seja composta de uma rotação com uma homotetia de centro no centro de rotação. Se o centro da rotação não for o centro da homotetia, esta não deixa invariante o centro da rotação.
  4. $$\begin{matrix} &{\cal{R}}(O, \alpha)&&{\cal{H}}(O, k)&\\ [EFGH]&\longrightarrow&[E'F'G'H']& \longrightarrow&[ABCD]\\ E&\mapsto & E' & \mapsto & A \\ F&\mapsto & F' & \mapsto & B \\ G&\mapsto & G' & \mapsto & C \\ H&\mapsto & H' & \mapsto & D \\ \end{matrix}$$ Para que a centro, designado por $\;O$, da rotação seja o centro da homotetia é preciso que $\;\alpha=EÔE'=EÔA=FÔF'=FÔB=GÔG'=GÔC=HÔH'=HÔD\;$, já que, para a homotetia de centro $\;O\;$ que faz corresponder $\;H'\;$ a $\;D\;$ e $\;G'\;$ a $\;C\;$, $\; O, \;H',\;D\;$, são colineares como são colineares $\;O, \;G', \;C$, ou seja, $\;HÔD = GÔC\;$....
  5. Como se determina esse ponto $\;O\;$ centro da dilação rotativa (composta de rotação e homotetia de centro comum)?
    • Toma-se, por exemplo, o ponto $\;K\;$ da interseção $\;CD.GH\;$ e o ângulo $\; \alpha = (\dot{K}D, \dot{K}H)= (\dot{C}D, \dot{G}H) = (\dot{B}C, \dot{F}G), = ... $
    • Da circunferência que passa por $\;H, \;D, \;K;$ o arco $\;\widehat{HD}$ assinalado (a tracejado grosso) é o arco da circunferência $\;(HDK);$ em que se inscreve $\;\alpha\;$ e, por isso, qualquer ponto $\;P\;$ da circunferência que não seja $\;H, \;D$, nem ponto desse arco é vértice de um ângulo $H\hat{P}D$ de amplitude $\;\alpha\;$
      Do mesmo modo, o arco $\;\widehat{GC}$ da circunferência que passa por $\;G, \;C, \;K\;$ em que se inscrevem ângulos de amplitude $\;\alpha\;$ com vértice $\;Q\;$ nessa circunferência $\;(GCK)\;$ e fora do arco.
  6. No caso da nossa figura, as circunferências $\;(GCK)\;$ e $\;(HDK)\;$ têm dois pontos em comum que são vértices de ângulos de amplitude $\;\alpha\;$. Um deles é $\;K\;$ e o outro é $\;\mathbb{O}\;$. A vermelho na figura, este é o ponto procurado: $$\begin{matrix} &{\cal{R}}(O, \alpha)&&\\ G&\longmapsto & G'& G'ÔG= CÔG =\alpha\\ H&\longmapsto & H' & H'ÔH= DÔH =\alpha \wedge G'H' \parallel CD \wedge GH=G'H'\\ &&&\\ &{\cal{H}}(O, k)&&\\ G'&\longmapsto & C& G' \in OC\\ H'&\longmapsto & D & H' \in OD \wedge G'H'= GH = CD: \frac{CD}{G'H'}=\frac{CD}{GH} =k\\ \end{matrix} $$

4.6.14

Resolver problema de construção, usando transformações geométricas (23)


Problema:     Em que pontos deve ser construída a ponte perpendicular ao rio de margens $\;a, \;b\;$ paralelas que separa duas cidades $\;A, \;B\;$ de tal modo que se possa construir uma estrada entre elas o mais curta possível?

A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas, no caso translações.
  1. Estão dados na figura os dois pontos $\;A,\;B\;$ - cidades, e as retas $\;a, \;b\;$ - margens do rio que separa


  2. © geometrias, 4 de Junho de 2014, Criado com GeoGebra



  3. Sem contar com o rio, o caminho mais curto entre as duas cidades, seria $\;AB\;$. Para determinar as posições dos pontos extremos da ponte é preciso considerar a mais o comprimento da travessia do rio.
  4. Tome-se um vetor $\;\overrightarrow{u}\;$ e aplique-se a $\;A\;$ a translação associada a esse vetor : $\;\overrightarrow{AA'} = \overrightarrow{u}\;$ ou $\;A'= A + \overrightarrow{u}$. Incluída a travessia, a estrada mais curta deve medir $\;AA' + A'B\;$
  5. A reta $\;AA'\;$ corta $\;b\;$ em $\;H\;$ e esse é um extremo da ponte. O outro será $\;H'= H - \overrightarrow{u}\;$ sobre $\;a\;$ e $\;AH'HA'\;$ é um paralelogramo.
    $\;AA'= HH'\;$ e $\;AH' = AH\;$. Logo $\;AA'+ A'B = AH'+H'H+HB$
E se houver dois rios a separar $\;A\;$ de $\;B\;$? Fica para a próxima entrada.

12.5.14

Resolver problema de construção usando homotetia


Problema:     Desenhar uma circunferência que passa por um ponto dado, $\;A\;$, que seja tangente a duas retas dadas $\;a, \;b$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 12 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 5}\;$ ao fundo à direita, pode seguir os passos da construção.
  1. São dados um ponto $\;A\;$ e duas retas $\;a, \;b$.
  2. Para que uma circunferência seja tangente a duas retas $\;a, \;b\;$ é preciso que tenha centro equidistante delas. Esse centro está sobre uma bissetriz do ângulo das duas retas quando elas se intersetam ou sobre uma reta paralela a $\;a, \;b\;$ quando estas são paralelas. No caso da nossa construção, as retas $\;a.b\;$ são concorrentes em $\;O$. E, como sabemos, na bissetriz do ângulo das duas retas incidirá o centro de qualquer das circunferências tangentes a $\;a\;$ e $\;b$.
  3. Tomamos um ponto $\;G\;$ sobre a bissetriz e a circunferência nele centrada tangente a $\;a\;$ em $\;I\;$ e a $\;b\;$ em $\;H\;$.
  4. Duas circunferências tangentes a $\;a\;$ e $\;b$ são correspondentes por alguma homotetia de centro $\;O$; Para determinar a homotetia entre uma circunferência $\;(G)\;$ e a circunferência que passa por $\;A\;$, basta traçar a reta $\;OA\;$ e a sua interseção $\;J\;$ com $\;(G)\;$. A homotetia de centro em $\;O\;$ que transforma $\;J\;$ em $\;A\;$ transforma $\;G\;$ em $\;K\;$, este obtido pela interseção da bissetriz com a paralela a $\;JG\;$ tirada por $\;A$.
  5. A circunferência de centro em $\;K\;$ que passa por $\;A\;$ é a homotética de $\;(G)\;$ tangente à reta $\;a\;$ no homotético de $\;I\;$ e à $\;b\;$ no homotético de $\;H\;$

7.5.14

Resolver problema de construção usando homotetias


Problema:    Determinar os vértices de um triângulo de que se conhecem as posições de três pontos que dividem os três lados em razões dadas.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 7 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo ao meio, pode seguir os passos da construção.
  1. São dados três pontos $\;D, \;E, \;F\;$ e quatro pares de números $\;(m, \;n),\;(p, \;q),\;(r, \;s),\;$.
    Para a nossa resolução, vamos designar os vértices do triângulo por $\;A, \;B, \;C\;$ e as retas (lados) por $\; a=BC, \;b=AC, \;c=AB\;$ e sendo
    • $\;D\;$ um ponto do segmento $\;BC$, tal que $\;\displaystyle \frac{BD}{DC}=\frac{m}{n}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(D, -\frac{m}{n} \right)\; \\ C &\longmapsto & B \\ \end{matrix} $$ em que $ \displaystyle \;{\cal{H}}\left(D, -\frac{m}{n} \right)\;$ é uma homotetia de centro em $\;D\;$ e razão $\displaystyle \;-\frac{m}{n}$
    • $\;E\;$ um ponto do segmento $\;CA$, tal que $\;\displaystyle \frac{CE}{EA}=\frac{p}{q}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(E, -\frac{p}{q} \right)\; \\ A &\longmapsto & C \\ \end{matrix} $$
    • $\;F\;$ um ponto do segmento $\;AB$, tal que $\;\displaystyle \frac{AF}{FB}=\frac{r}{s}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(F, -\frac{r}{s} \right)\; \\ B &\longmapsto & A \\ \end{matrix} $$
  2. Não sabemos onde estão os vértices $\;A, \;B, \;C\;$, mas podemos determinar facilmente as retas $\;a, \;b, \;c$. Por exemplo, tratemos da determinação de $\;c\;$ da qual, não conhecemos nem $\;A\;$ nem $\;B\;$, e só conhecemos $\;F\;$. Só precisamos de determinar um segundo ponto de $\;c$. Assim, $$\begin{matrix} & \;{\cal{H}}\left(E, -\frac{p}{q} \right)\;&&\;{\cal{H}}\left(D, -\frac{m}{n} \right)\;& \\ A &\longmapsto & C &\longmapsto & B\\ F&\longmapsto&F'&\longmapsto&F'' \end{matrix}$$ A transformação composta $\; {\cal{H}}\left(D, -\frac{m}{n} \right)\; \circ \;{\cal{H}}\left(E, -\frac{p}{q} \right)\;$ tal que $\;B\;\longmapsto\;A$ e $\;F \longmapsto F''$ garante que, sendo $\;F\in AB\;$, também $F'' \in c =AB=A'B'$, pois as homotetias preservam a incidência, e claro, a colinearidade.
  3. Temos assim a reta $\;c=FF''\;$ que conterá o segmento $\;AB\;$, de que ainda não conhecemos as posições dos extremos.
  4. $\;E\;$ é um ponto de $\;b=AC\;$. Para determinar um segundo ponto de $\;b\;$, seguimos o mesmo processo. Assim: $$\begin{matrix} & \;{\cal{H}}\left(D, -\frac{m}{n} \right)\;&&\;{\cal{H}}\left(F, -\frac{r}{s} \right)\;& \\ C&\longmapsto & B &\longmapsto & A\\ E&\longmapsto&E'&\longmapsto&E'' \end{matrix}$$ em que $\;E''\;$ é um ponto da reta $\;b\;$ já que $\;E\in CA\;$
  5. $\;b=EE''\;$
  6. Do mesmo modo, se determina um ponto $\;D''\;$ como correspondente de $\;D\;$ pela composta $$\begin{matrix} &\;{\cal{H}}\left(F, -\frac{r}{s} \right)\;& &\;{\cal{H}}\left(E, -\frac{p}{q} \right)\;&\\ A&\longmapsto&B&\longmapsto&C\\ D&\longmapsto&D'&\longmapsto&D''\\ \end{matrix}$$
  7. $\;a =BC\;$
  8. Finalmente, temos $\;A= b.c, \;B=a.c, \; C=a.b\;$
  9. e os lados do triângulo $\;BC, \;CA, \;AB\;$,
  10. divididos respetivamente por $\;D$, $\;E$, $\;F$
  11. em pares de segmentos $\;(\;BD,\;DC\;)\;$, $\;(\;CE,\;EA\;)\;$, $\;(\;AF,\;FB\;)\;$
  12. de razões $\;\displaystyle \frac{BD}{DC}=\frac{m}{n}\;$, $\;\displaystyle \frac{CE}{EA}=\frac{p}{q}\;$ e $\;\displaystyle \frac{AF}{FB}=\frac{r}{s}\;$
Pode deslocar na figura os cursores $\;m, \;n; \;p, \;q; \;r, \;s\;$ ou os pontos $\; D, \;E, \;F\;$ e ver o que acontece em cada caso de variação.