Mostrar mensagens com a etiqueta problema de construção. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta problema de construção. Mostrar todas as mensagens

24.2.19

Com compasso, dividir por 3 o segmento determinado por 2 pontos


Problema: Dados dois pontos A e B, determinar um ponto K sobre AB tal que AB=3AK, usando compasso
A construção é em tudo análoga à realizada para dividir um segmento em dois da entrada anterior. A barra ao fundo do rectângulo de visualisação permite o acompanhamento dos passos da construção dinâmica aqui apresentada..

1.      São presentes os dois pontos A e B.



2.      Começamos por usar o compasso para multiplicar; assim:

          (A, B), (B, A) ---------> (A,B).(B,A)={C, D}
          (C,B)-------------------> (C,B).(B,A)={A,E}
          (C,B)-------------------> (E,B).(B,C)={C,F}
          AB+BF=AF=2AB
          (F,E)-------------------> (F, E).(E, F) ={E,G}
          (G,F)-------------------> (G,F).(F,G)={H,E}
          AB+BF+FH=AF+FH=2AB+AB = 3AB
3.      Usamos o compasso para dividir; assim:

          (H, A), (A, B) ---------> (H,A).(A,B)={I, J}

4.
          (I,A), (J,A) -----------> (I,A).(J,A)={A,K}
          AK: 3AK=AB

28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo $\;A\in FE, \;B \in ED, \;C \in DF\;$



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor $\;\fbox{n= 1, 2, … 10}\;$ pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points $\;A, \;B, \;C,\;$ et une circonférence; inscrire dans cette circonférence un triangle $\;DEF,\;$ tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo $\;GF\;$ paralela a $\;BC\;$ e que $\;GE\;$ interseta $\;BC\;$ em $\;H,\;$ sendo iguais os ângulos ($\;BHE\;$ ou) $\;\angle B\hat{H}G\;$ e $\: \angle H\hat{G}F\;$ alternos internos no sistema de retas paralelas $\;GF,\; BC\;$ cortadas pela secante $\;HG\;$ e também $\;\angle H\hat{G}F;$ e $\;BDC\;$ são iguais por estarem inscritos num mesmo arco $\;ETF.\;$ Assim sendo, são semelhantes os triângulos $\;BHE\;$ e $\;BCD\;$ com o ângulo $\;B\;$ comum e os ângulos $\;BHE\;$ e $\;CDB\;$ iguais. E, pelo menos, o ponto $\;H\;$ pode ser determinado por $\;HB.BC=BT^2.\;$
Começamos por aí.
É preciso determinar um dos pontos $\;D,\; E\;$ ou $\;F\;$ para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points $\;A, \;H,\;$ une circonférence et une droite $\;BC.\;$ Déterminer sur cette circonférence un point $\;E,\;$ tel qu'en le joignant aux deux points donnés $\;A,\; H,\;$ la corde $\;FG\;$ soit parallèle à la droite $\;BC.\;$ Soit le problème résolu et $\;FG\;$ parallèle à $\;BC.\;$



Consideremos o problema resolvido e $\;FG\;$ paralela a $\;BC.\;$ De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a $\;HA\;$ tirada por $\;F,\;$ que intersecta a circunferência dada em $\;L\;$ e traçamos a reta $\;LG\;$ que intersecta $\;HA\;$ em $\;M.\;$

Nestas condições, temos $\; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi, $
$\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\; $
e, em consequência,
$ \Delta [HGM] \sim \Delta [HEA],\;$ dos quais $\angle \hat{H}\; $ é ângulo comum. E é essa semelhança que nos permite escrever $$\frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 $$ que nos permite determinar sobre $\;HA\;$ o ponto $\;M,\;$ colinear de $\;G, \;L\;$ sendo
$\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )$




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné $\;M,\;$ mener une sécante telle que l'angle inscrit $\;L\hat{F}G\;$, qui correspond à la corde interseptée $\;GL,\;$ soit égale à un anglé donnée $\;A\hat{H}B.\;$



Por um ponto qualquer da circunferência dada, tiramos paralelas a $\;BH\;$ e a $\;MH\;$ ou seja inscrevemos na circunferência um ângulo de amplitude igual a $\; \angle B\hat{H}M\;$
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a $\; \angle B\hat{H}M,\;$ o problema de Castillon fica resolvido tirando por $\;M\;$ a tangente a ela que intersectará a circunferência inicialmente dada nos pontos $\;G, L\;$

Por esse ponto $\;G\;$, finalmente determinado, a paralela a $\;BC\;$ por ele tirada intersecta a circunferência inicial em $\;F.\;$
$\;D\;$ ficará determinado na circunferência pela reta $\;CF\;$ e
o ponto $\;E\;$ ficará determinado sobre a circunferência pela reta $\;DB\;$ ou pela reta $\;FA.\;$… $\blacksquare$

15.1.18

Envolvente. Problema recorrrendo a lugar geométrico (20)


Notas prévias:

O lugar geométrico dos pontos a uma distância $\;r\;$ de um ponto $\;O\;$ dado é uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ e uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ é o lugar geométrico dos pontos a uma distância $\;r\;$ do ponto $\;O.\;$
A distância de um dado ponto O a uma reta a é igual ao comprimento do segmento da reta perpendicular tirada por $\;O\;$ a $\;a\;$ de extremos $\;O\;$ e $\;A,\;$ pé dessa perpendicular a $\;a;\;$ e, por isso, podemos dizer que sendo o
lugar geométrico dos pontos dos pés das perpendiculares a retas equidistantes de um ponto $\;O\;$ é uma circunferência ou mesmo que a circunferência é o lugar geométrico das retas equidistantes de $\;O\;$ tomando por cada reta o seu ponto de tangência ou dizendo que a circunferência é envolvente (que envolve ou é envolvida) das retas equidistantes do seu centro.


Problema: Para um dado ângulo $\;\angle B\hat{A}C, \;$ determinar a envolvente da base $\;BC\;$ de um triângulo $\;[BAC]\;$ cujo perímetro é constante.

F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 123. Quelle est l'envelope de la base BC d'un triangle BAC dont le périmètre est constant, et dont l'angle A est donné de grandeur et de position?

A seguir encontra-se uma ilustração dinâmica dos dados do enunciado deste problema, bem como dos auxiliares passos de uma construção em apoio da demonstração.
  1. Apresenta-se ao cimo da janela um segmento de reta de comprimento igual ao perímetro $\;2p\;$ constante de um triângulo $\;ABC\;$ partido em 3 segmentos, da esquerda para a direita, $\;AB, \;BC, \;CA.\;$ e também em duas partes iguais a $\;p,\;$ $\;AM, \;MA\;$.
    Logo abaixo na janela, temos um exemplar de triângulo com um ângulo $\;Â\;$ dado (no caso, de amplitude 46°) e lados com os comprimentos referidos acima ou seja com o perímetro constante considerado (no caso, 7).
    Considerámos, no segmento original, o ponto $\;B\;$ a tomar posições entre $\;A\;$ e $\;M,\;$ já que $\;AB < BC+CA\;$ (desigualdade triangular). Se deslocar $\;B\;$ pelas posições dos pontos de $\;AM,\;$ obtemos todos os representantes dos triângulos de perímetro 7 e com ãngulo 46° em $\;A.\;$
    Os lados $\;AB\;$ e $\;AC\;$ são segmentos das retas definidas por cada um dos pares de pontos $\;(A,\; B),\; (A, \;C).\;$ Já vimos que não há triângulo quando $\;B=A\;$ ou quando $\;B=M\;$


  2. 14 janeiro 2018, Criado com GeoGebra



  3. As posições extremas de $\;B:\; B=M\;$ e $\;B=A \;$ levam-nos a aos pontos de intersecção de $\;AB\;$ e $\;AC\;$ com a circunferência $(A, \;p)$ sendo $\;p=AM\;$ semiperímetro de triângulos com um ângulo de 46°
  4. $\;AD=AE=p,\;$ ou seja $\;ADE\;$ é um triângulo isósceles de base $\;DE.\;$ com ângulo $\;Â\;$ dado (46°)
    $\;AD+AE = 2p = AB+BC+CA\;$
  5. Consideremos a circunferência de centro em $\;H\;$ tangente em $\;D\;$ e $\;E\;$ às retas $\;AB\;$ e $\;AC\;$ respetivamente:
    • $\;DH \perp AB, \;HE \perp AC,\;$
    • Por ser $\; DH=HE, \; \;\; H\;$ está na bissetriz do ângulo $\;Â.\;$ Assim, esta circunferência $\;(H, HE)\;$ é uma ex-inscrita de qualquer dos triângulos $\;ABC\;$ e portanto tangente a $\;BC.\;$
  6. As bases $\;BC\;$ são tangentes ao arco aberto da circunferência $\;(H, \;HT):\; ]\widehat{DTE}[ \;$ a vermelho (os extremos a castanho $\;D, \;E\;$ não são pontos da envolvente dos segmentos $\;BC\;$ considerados).

31.12.17

Problema de construção —análise e síntese (9)


De vez em quando vamos acrescentando problemas de construção euclidiana (régua e compasso) usando um outro dos métodos já apresentados seguindo vários autores que foram sendo referenciados. Hoje resolvemos um problema de quadrados a partir da análise das propriedades de quadrados, ângulos, … triângulos isósceles,….

Problema: Construir um quadrado de que é dado um segmento de comprimento igual à soma $\;d+l"\;$ dos comprimentos da diagonal e do lado.


F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, Problema 41.

Análise do problema:
Com o problema resolvido, teríamos um quadrado $\;[ABCD]\;$ sendo $\;AB=BC=CD=DA=l,\; AC=BD=d.\;$ Sabemos que as diagonais de um quadrado são perpendiculares se bissetam num ponto e bissectam os ângulos retos do quadrado. Cada uma das diagonais divide o quadrado em dois triângulos rectângulos isósceles. $\;ABC, \;CDA\;$ por $\;AC\;$ e $\;DAB, \; BCD\;$ por $\;DB.\;$
O que temos é um segmento de reta de comprimento $\;d+l = \overline{AC}+\overline{CD}.\;$ Tomada uma reta qualquer e sobre ela o segmento de reta de extremos $\;A\;$ e $\;E\;$ como uma extensão da diagonal $\;AC,\;$ o vértice $\;C\;$ do quadrado é o ponto que divide $\;AE = d+l\;$ em $\;AC=d\;$ e $\;CE=l.\;$
Chamemos $\;M\;$ ao ponto médio de $\;AE,\;$ podemos construir um triângulo retângulo isósceles de hipotenusa $\;AE\;$ e catetos $\;AF, \;EF\;$ sendo $\;F\;$ a intersecção da perpendicular a $\:AE\,$ tirada por $\;M\,$ com uma semicircunferência de diâmetro $\;AE\;$. Este triângulo isósceles é meio quadrado de diagonal $\;AE\;$ Sobre o cateto $\;AF\;$ deste triângulo $\;AEF,\;$ incidirá o vértice $\;D\;$ do quadrado que procuramos. Como $\;AE\;$ é a reta da diagonal $\;AC, \;\; CD \parallel EF \perp AF\;$


A construção (sintética, a seguir) é sugerida pelas relações desveladas na análise acima feita. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 5}.\;$



8 janeiro 2018, Criado com GeoGebra


Considerando as considerações acima, podemos apresentar em síntese, os passos da nossa construção bem justificados.

Para $\;\fbox{n= 1}:\;$ a figura apresentada ilustra os dados $\;A, \;E,\;AE= d+l$, para além do cursor $\;\fbox{n=1,..., 5}.\;$

Para $\;\fbox{n= 2}:\;$ acrescentamos

  • o ponto $\;M\;$ médio de $\;AE\;$ e a perpendicular a $\;AE\;$ tirada por $\;M\;$ — mediatriz — (recorrendo a $\;(A, \;AE). (E,\;EA)),\;$ por exemplo).
  • o ponto $\;F\;$ numa intersecção $\; \displaystyle (\perp_M AE) . (M,\;ME)\;$ e os catetos $\;EF, \;FA\;$ triângulo retângulo isósceles de hipotenusa $\;AE.\;$

Para $\;\fbox{n= 3}:\;$ acrescentamos a bissetriz do ângulo $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ que determina o vértice $\;D\;$ do quadrado na sua intersecção com $\;AF. \;$ Como $\;CD \parallel EF\;$ e uma paralela a $\;EF\;$ fará um ângulo da mesma amplitude de $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ sendo ângulo externo do triângulo determinado por estas últimas 3 retas e igual à soma dos ângulos internos a ele não adjacentes e que devem ser de iguais amplitudes —$\;\displaystyle \frac{\pi}{8}\;$ para que os lados opostos a cada um deles sejam iguais, ou seja $\; DC=CE\;$ já que $\;C \;$ é tal que $\;AE = AC+CD=d+l. \;$

Para $\;\fbox{n= 4}:\;$ acrescentam-se

  • o ponto $\;C\;$ como $\; (\parallel_D EF).AM\;$
  • as retas $\; \displaystyle (\perp_A AF)\;$ e $\; \displaystyle (\perp_C EF)\;$
  • o ponto $\;B\;$ como intersecção $\; \displaystyle (\perp_A AF) . (\perp_C EF)\;$
  • os segmentos de reta $\; AB, \;BC, \; CD, \;DA\;$ como lados do quadrado que procurámos.

Para $\;\fbox{n= 5}:\;$ realçamos o interior do quadrado $\;[ABCD].\;$      □

16.6.16

quatro pontos, um em cada lado de qual quadrado?


Hoje vamos tratar de um outro tipo de problema de construção de quadrados, que nos tem aparecido repetidamente, a saber:
a construção de um quadrado do qual cada uma das retas dos seus lados passa por um só de quatro pontos $\;A, \;B, \;C, \;D\;$ dados..
Para resolver este problema, é necessário olhar para as propriedades do quadrado. Tomem-se
  • quatro retas
    • $\;p, \;q, \;r,\; s, \;$ sendo
      • $\;p \perp q, \;q\perp r, \;r\perp s, \;s\perp p,\;$
      • $p \parallel r, \; q \parallel s\;$
      • e igualmente distanciadas $\;p\;$ de $\;r\;$ e $\,q\;$ de $\;s\;$
    • e os quatro pontos
      • $P,\; Q,\;R, \;S, \,$
        • respetivamente $\;p.q, \;q.r, \; r.s,\;s.t,\;$
        • sendo, obviamente iguais os segmentos $\;PQ, \;QR, \;RS, \; SP.\;$ das retas $\;p, \;q, \;r,\; s, \;$ respetivamente.
    Sabemos que
    • se uma reta corta duas retas fazendo ângulos alternos internos iguais, cf (I.27), então estas retas são paralelas;
    • qualquer segmento com extremidades em duas retas paralelas, cf (I.29), fazem com elas ângulos alternos internos iguais;
    • segmentos de reta unindo extremidades de segmentos iguais e paralelos, cf (I.33), são iguais e paralelos;
    • E, em consequência, se cortarmos dois pares de retas paralelas igualmente distanciadas, por dois segmentos a fazer ângulos alternos internos iguais (cada um a cada um), esses segmentos são iguais.
    No caso do nosso problema não nos são dados mais que um ponto $\;A\;$ em $\;p, \;$ $\;B\;$ em $\;q, \;$ $\;C\;$ em $\;r\;$ e $\;D\;$ em $\;s.\;$
    Se tomarmos $\;AC\;$ a ligar pontos das paralelas $\;p\;$ e $\;r\;$ e o ponto $\;B\;$ de $\;q,\;$ qual deve ser a relação de um reta tirada por $\;B\;$ com $\;q, \;s,\; AC\;$ para intersectar $\;s\;$ de modo a ter os mesmos ângulos alternos internos ao cortar $\;q, \; s\;$ em ângulos iguais aos feitos por $\;AC\;$ ao cortar $\;p, \;r$?
    Bastará tirar por $\;B\;$ a perpendicular a $\;AC\;$ porque, designando por $\;I\;$ a intersecção das perpendiculares, $\; A\hat{P}B= B\hat{I}A = 1 reto, \;$ e, em consequência, $\;P\hat{B}I + A\hat{I}B = 2 retos,\;$ bem como $\;Q\hat{A}I + A\hat{I}B = 2 retos,\;$ ou seja, $\;Q\hat{A}I = P\hat{B}I.\;$
    De modo inteiramente análogo, se provaria que cada um dos ângulos feitos entre $\;AC, \;r\;$ era igual a um dos ângulos feitos pela perpendicular a $\;AC\;$ tirada por $\;B\,$ com $\;s\;$.

    Se $\;BD\;$ não for perpendicular a $\;AC,\;$, na perpendicular a $\;AC\;$ tirada por $\;B\;$ encontramos um segundo ponto $\;E\;$ de $\;s\;$ de que nos tinha sido dado $\;D.\;$ Este ponto $\;E\;$ é tal que $\;BE\perp AC\;$ e $\;BE =AC, \;$ por estes serem segmentos com extremidades em pares de retas igualmente distanciadas e paralelas, por fazerem com elas iguais ângulos alternos internos: $\;s=DE\;$
    Isto chega para resolver o nosso problema de construção.

    $\fbox{n=0}\;\;\;$ Não conhecemos mais que os pontos $\;A, \;B, \;C, \;D\;$ dados.


    © geometrias.16 junho 2016, Criado com GeoGebra


    Peguemos na régua e no compasso.
    $\fbox{n=1}$ Tira-se por $\;B\;$ a perpendicular a $\;AC \;$ que, intersectada pela circunferência de centro $\;B\;$ e raio $\;AC\;$ determina um ponto $\;E\;$ da reta $\;s\;$ que contém o lado oposto ao lado $\;q\;$ que passa por $\;B.\;\;\;\; DE=s$
    $\fbox{n=2}$ Determinada a reta $\;s\;$ pode tirar por $\;A\;$ a perpendicular $\;p\;$ a ela e tomar a intersecção $\;p.s : \;\;\;S, \;$ vértice do quadrado.
    Do mesmo modo, a perpendicular a $\;s\;$ tirada por $\;C\;$ que designamos por $\;r\;$, sendo o vértice $\;R\;$ determinado por $\;r.s\;$
    $\fbox{n=3}$ Finalmente a perpendicular a $\;p\;$ (ou a $\;r\;$) tirada por $\;B\;$ que designamos por $\;q\;$ e que é a reta que faltava para a determinação por $\;p.q\;$ de $\;P\;$ e por $\;q.r\;$ de $\;Q.$
    $\fbox{n=4}$ Apresenta-se o quadrado $\;PQRS\;$ em que $\;A\in p, \; B\in q, \; C \in r, \; D \in s\;$

    Este problema tem muitas soluções, claro.

    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martin. Geometric Constructions Springer. New York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

17.3.16

Construir um trapézio conhecendo comprimentos das bases e amplitudes dos ângulos adjacentes a uma delas.


Problema:
Construir um trapézio $\;[ABCD]\;$ de que conhecemos os comprimentos das suas bases $\;a=AB, \;c=CD\;$ e os ângulos adjacentes a uma das suas bases $\;\beta=A\hat{B} C, \; \alpha= B\hat{A}D.$

De um trapézio $\;[ABCD]\;$ de bases $\;AB, \;CD\;$ e $\; \angle B\hat{A}D = \alpha\;$ qualquer reta que faça um ângulo igual a esse $\;\alpha\;$ com a reta $\;AB\;$ é paralela a $\;AD.\;$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 16 março 2016, Criado com GeoGebra



Para a determinação do vértice $\;C\;$ tomamos um ponto $\;E\;$ sobre $\;AB\;$ tal que seja $\;AE = CD. \;$
Tracemos o segundo lado de um ângulo de vértice em $\;E\;$ e primeiro lado $\;EB\;$. Sabemos que esse segunda lado é paralelo a $\;AD\;$ e, por isso, $\;C\;$ é um ponto desse segundo lado. Por outro lado, sabemos que está sobre o segundo lado do ângulo de vértice $\;B\;$ que faça um ângulo $\;\beta\;$ com o lado $\;BA\;$.
Tod o o problema de construção do trapézio em questão se resume pois a construir o triângulo de base $\;EB=a-c\;$ e ângulos adjacentes $\;\alpha, \; \beta\;$ cujo terceiro vértie é $\;C\;$
O quarto vértice $\;D\;$é a intersecção da paralela a $\;AB\;$ tirada por $\;C\;$ com a paralela a $\; EC\;$ tirada por $\;A.\; \;\;\;\;\;$ □

201. Construire un trapèze connaissant les deux bases et les angles adjacents à l'une de ces bases.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

10.3.16

Construir um trapézio de que conhecemos as bases e as diagonais


Problema:
Construir um trapézio de que se conhecem os comprimentos das bases AB (a=AB, c=CD) e das diagonais (e=AC, f=BD)




Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor na direita baixa da janela.


@geometrias, 10 março 2016, Criado com GeoGebra


Tomado um ponto $\;A\;$ qualquer e uma reta a passar por $\;A\;$ para suporte de uma base $\;AB,\;$ basta construir o triângulo com um vértice em $\;A\;$ de lados de comprimento $\;a+c\;$ (sobre a reta $\;AB\;$), $\; e, \; f.\;$
$\;C\;$ é um vértice deste triângulo:
Chamemos $\;E\;$ ao vértice desse triângulo sobre a reta $\;AB\;$ e na circunferência $\;(A, a+c).\;\; C\;$ está em $\;(A, e).(E, f).\;$
O ponto $\;D\;$ é intersecção das paralelas a $\;AB\;$ tirada por $\;C\;$ e a $\;EC\;$ tirada por $\;B.\;$ □

203. Construire un trapèze connaissant les bases et les diagonales..l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

25.2.16

Construir circunferências centradas nos vértices de um triângulo e tangentes duas a duas.


Problema:
É dado um triângulo $\;ABC.\;$ Determinar as 3 circunferências $\;(A,\; r_A), \; (B,\: r_B), \; (C,\; r_C)\;$ tangentes exterioremnte duas a duas.

A figura dinâmica que se apresenta a seguir ilustra o raciocínio (de análise) que suporta a construção e a construção ela mesma.Faça variar o valor de $\;n\;$ no seletor ao fundo da janela de construção.
Começamos por construir o triângulo de vértices $\;A,\;B,\;C\;$ e de lados $\;a=BC, \;b= AC, \; c=AB\;$. Circunferências centradas em $\;A\;$ e $\;B\;$ que sejam tangentes exteriormente têm raios $\;r_A,\;r_B\;$ tais que $\; r_A + r_B = AB = c.\;$ Pelas mesmas razões terá de ser $\; r_A + r_C = AC = b\;$ e $\; r_B + r_C = BC = a.\;$ Por isso, $\; 2r_A + 2r_B + 2r_C =a+b+c.\;$
Tomando um segmento $\;B'B''\;$ de comprimento igual ao perímetro $\;a+b+c\;$ do triângulo e o ponto $\;M\;$ médio de $\;B'B''\;$, sabemos agora que $\;B'M= r_A + r_B + r_C\;$ e, como $\;r_B + r_C = a, \; \; C'M = B'M-a = r_A.$
Conhecido $\;r_A\;$, podemos traçar $\;(A, \; r_A).\;$ que intersecta $\;AB \;$ e $\;AC\;$ nos seus pontos de tangência com as outras duas circunferências □

© geometrias: 3 março 2016, Criado com GeoGebra


159. Des sommets d'un triangle ABC comme centres, décrire trois circunféences tangentes deux à deux éxterieurement.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

14.2.16

Numa circunferência inscrever um triângulo retângulo


Problema:
São dados dois pontos $\;P,\;Q\;$ e uma circunferência $\;(O)\;$
Inscrever na circunferência $\;(O)\;$ um triângulo retângulo tal que a reta de um cateto passe $\;P\;$ e a reta do outro cateto passe por $\;Q.\;$

©geometrias. 14 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Se um dos lados de um ângulo reto tem de passar por $\;P\;$ e outro por $\;Q\;$ então o seu vértice será um ponto da circunferência de diâmetro $\;PQ.\;$ Como o ângulo reto tem vértice sobre a circunferência $\;(O)\;$ este é um dos pontos da interseção das duas circunferências citadas - a que chamamos $\;A\;$. Os restantes vértices serão $\;B\;$ na interseção de $\;(O)\;$ com $\;AP\;$ e $\;C\;$ na interseção de $\;(O)\;$ com $\;AQ.\;$
No caso da nossa figura, o problema tem duas soluções.

148. Inscrire dans un cercle un triangle rectangle dont les cotês de l'angle droit ou leurs prolongements passent par deux points donnés P et Q
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

7.2.16

Circunferência tangente a duas retas paralelas e que passa por um ponto da faixa entre elas


Problema:
São dadas duas retas paralelas $\;a, \;b\;$ e um ponto $\;P\;$ da faixa entre elas.
Construir uma circunferência tangente às retas $\;a, \; b\;$ e a passar pelo ponto $\;P.\;$

©geometrias. 7 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor na esquerda baixa da janela de visualização.



Uma circunferência tangente a duas paralelas $\;a, \;b\;$ tem o seu centro numa terceira paralela $\;m\;$ equidistante das duas dadas e raio igual a $\;r\;$ - distância de $\;m\;$ a $\;a .\;$ Se passa por $\;P\;$, o centro da circunferência estará numa circunferência centrada em $\;P\;$ e raio $\;r.\;$ O problema tem duas soluções $\;(O), \;(O')$.
Nas condições do nosso problema há sempre duas soluções. Se $\;P\;$ fosse um ponto de uma das paralelas $\;a\;$ ou $\,b\;$ o problema teria uma só solução e se estivesse fora da faixa entre as paralelas, não haveria circunferência alguma tangente às duas paralelas.

155. Étant donnés deus droîtes parallèles X, Y et un point A situé entre elles, décrire un cercle passant par ce point et tangente aux deux droîtes
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

30.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (1)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos sobre uma perpendicular a uma reta $\;r\;$ dada e num dos semi-planos determinados por ela.
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 30 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Por serem dados dois pontos da circunferência que se procura, bastará determinar um terceiro ponto da circunferência ou o seu centro $\;F\;$ que é um ponto equidistante dos pontos $\;A\;$ e $\;B\;$ — $( FA = FB )$ — da mediatriz de $\;[AB].$ Para que a circunferência seja tangente a $\;r\;$ é preciso que o seu raio seja igual à distância de $\;F\;$ a $\;r,\;$ ou, o que é o mesmo, que seja igual à distância de $\;r\;$ à mediatriz de $\;[AB]\;$. Esta distância é $\;CD\;$ em que $\;C\;$ é $\;AB.r\;$ e $\;D\;$ é o ponto médio de $\;[AB]\;$. O centro da circunferência é determinado como $\; (A, CD). (B, CD),\;$ por exemplo. Há dois pontos $\;E, \;F\;$ que verificam essas condições. As soluções do problemas serão $\;(E, EA)\;$ e $\;(F, FB) \;$, simétricas relativamente ao espelho $\;AB.\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

24.4.15

elementos: triângulo isósceles com ângulos da base duplos do terceiro.


As últimas entradas com publicações de alguns teoremas e problemas (acompanhados das construções dinâmicas auxiliares) de "Os Elementos" procuram chamar a atenção para a forma como Euclides organizou "Os Elementos". Procuramos fazer isso, seguindo resultados dos livros I a IV necessários para a inscrição de um pentágono regular num círculo dado. Vamos, nesta entrada, olhar para um problema de construção do Livro IV que mobiliza, entre outras proposições, as seguintes:
PROP. XI. PROB. do Livro II: Dividir uma linha reta de sorte que o retângulo da toda e de uma parte seja igual ao quadrado da outra parte
e
PROP. XXXVII. TEOR. do Livro III: Se de um ponto qualquer fora de um círculo se tirarem duas retas, das quais uma corte o círculo, e a outra chegue somente até a circunferência; e se o retângulo compreendido pela reta inteira que corta o círculo e pela parte dela que fica entre o dito ponto e a parte convexa da circunferência, fôr igual ao quadrado da reta incidente sôbre a circunferência, será a reta incidente tangente do círculo
que aqui foram apresentadas anteriormente.
Livro IV - PROP.X. PROB.

Construir um triângulo isósceles de maneira que cada um dos ângulos, que estão sobre a base, seja o dobro do ângulo do vértice.

Dados dois pontos $\;A, \;B\;$, procuramos determinar, por construção com régua e compasso, um ponto $\;P\;$ tal que $\;AP=AB\;$ e que $\;\angle A\hat{B}P = \angle B\hat{P}A= 2\times \angle P\hat{A}B \;$. A primeira daquelas condições - $\;AP=AB\;$ - é verificada por qualquer ponto $\;P\;$ de uma das circunferências $ \; (A, \;AB)\;$ de centro $\;A\;$ e raio $\;AB.\;$ (ou de $\;(B, \;BA)\;$).
A segunda daquelas condições exige a verificação das proposições citadas acima e aproveitamos para chamar a atenção para a distinção entre o que são passos de uma construção da totalidade dos passos necessários para as determinações e demonstrações das propriedades e que pode agora comparar.
As regras para contar passos de uma construção são simples:
— cada utilização da régua para traçar uma reta de um ponto a outro ou passando por eles para além deles conta-se como um passo;
— cada utilização do compasso para traçar uma circunferência considerado um ponto ($\;A\;$ - centro) e um intervalo $\;AB\;$ dados conta-se como um passo;
— As interseções de retas, de reta com circunferência ou de circunferências construídas consideram-se definidas pelas retas e circunferências e não contam como passos.

Nas demonstrações dessas proposições apresentadas, que pode ver, há muitos passos que obviamente não vão constar agora:
Os primeiros nove passos chegam para determinar um ponto $\;K:\; AB\times KB = AK^2\;$ (11.2)
Os cinco passos seguintes chegam para determinar o ponto $\;P:\; AP=AB \wedge AP=AK\;$ que, seguindo (37.3) garante que por ser $\;BP^2= AB\times BK\;$ $\;BP\;$ é tangente ao círculo $\;AKB\;$
Finalmente realçamos o triângulo $\;ABP\;$ e figuras de apoio para a demonstração final com relações entre ângulos de um triângulo isósceles e inscritos e com vértices numa circunferência.


© geometrias. 22 de Abril de 2015, Criado com GeoGebra

Fazendo variar os valores de n no cursor ao fundo, pode seguir os passos da construção. Para n=15 pode ver a figura construída e os elementos que apoiam a demonstração.

Determinação de $\;K\;$ conforme (11.2)

$\fbox{n=1}$     Traça-se a reta $\;AB\;$ com régua (Postulado I)
$\fbox{n=2}$     Traça-se a circunferência $\;(A, \; AB)\;$ com compasso (Post. II) e fica definido o ponto $\;C\;$ para além dos dados
$\fbox{n=3}$     $\;(B, \;BC)\;$
$\fbox{n=4}$     $\;(C, \;CB)\;$ e ficam definidos mais dois pontos dos quais tomamos $\;D\;$
$\fbox{n=5}$     $\;DA\;$ (perpendicular a $\;AB\; $ em $\;A$ ) e ficam definidos mais dois pontos comuns a $\;AD\;$ e $\;(A, \; AB)$
$\fbox{n=6}$     $\;(E, \;EA)\;$ e ficam definidos mais dois pontos $\;F,\;G\;$ comuns a $\;(E, \;EA)\;$ e $\;(A, \; AB)\;$
$\fbox{n=7}$     $\;FG\;$ e ficam definidos outros pontos de intersecção dos quais tomamos o ponto $\;H,\;$ médio de $\;AE\;$
$\fbox{n=8}$     $\;(H, \;HB)\;$ e ficam definidos outros pontos, dos quais tomamos $\;J\;$ um dos pontos comuns a $\;(H, \;HB)\;$ e $\;DA\;$
$\fbox{n=9}$     $\;(A, \; AJ)\;$ e dos novos pontos definidos tomamos $\;K\;$ sobre $\;AB\;$ e tal que $\; AK^2 = AB\times BK\;$

Determinação de $\;P:\; BP = AK $ conforme (2.2) e (1.4)


$\fbox{n=10}$     $\;(K,\; KB)\;$
$\fbox{n=11}$     $\;(B,\; BK)\;$ e ficam definidos $\;M, \;N$
$\fbox{n=12}$     $\;MN\;$ e fica definido $\;O, \;$ ponto médio de $\;KB$
$\fbox{n=13}$     $\;(O, \;OA\;$ e ficam definidos outros pontos dos quais tomamos $\;L, \;$ tal que $\;BL=AK\;$ por ser $ \;OA =OL\;$ ou
                  $\;AK+KO = OB+BL\;$ de que removemos $\;KO\;$ e $\;BO\;$ congruentes
$\fbox{n=14}$     $\;(B, \;BL)\;$ e ficam vários pontos dos quais tomamos $\;P\;$ comum a $\;(B, \;BL)\;$ e $\;(A, \;AB)\;$

Finalmente, o que falta demonstrar:

De toda a construção feita, deixámos o segmento $\;AB\;$ e acrescentámos
  • $BP, \;PA, \;PK\;$ — três passos de construção (régua),
  • a circunferência $\;AKP\;$ (5.4)— sete passos de construção:
    $\;(A, \;AK), \; (K, \;KA), \;(P, \;PK), \; (K, \;KP),\;$ (compasso),
    as duas retas mediatrizes que definem o incentro $\;I\;$ (régua) e, finalmente.
    a circunferência $\;(I, \; IA)\;$ ou $\;(AKP)\;$ (compasso) .
Sabemos que $\;AP=AB\;$ e que, sendo $\;BP =AK, \; BP^2 = AK^2 = BA\times BK$, por (37.3) $\;BP\;$ é tangente à circunferência $\;(AKP)\;$ em $\;P.\;$

Por (32.3) $\;\angle K\hat{P}B=\angle P\hat{A}K\;$.
Acrescentando $\;\angle K\hat{P}A\;$ a cada um daqueles ângulos congruentes, (ax.2) $\;\angle K\hat{P}B+ \angle K\hat{P}A = \angle P\hat{A}K+ \angle K\hat{P}A\;$ ou $\;\angle B\hat{P}A =\angle P\hat{A}K+ \angle K\hat{P}A.\;$
Por ser $\; \angle B\hat{K}P\;$ ângulo externo do triângulo $\;KPA\;$, por (32.1) e (ax. 1), $\; \angle B\hat{K}P= \angle P\hat{A}K + \angle K\hat{P}A =\angle B\hat{P}A.\;$
Sendo por construção $\;AB=AP,\;\;\angle A\hat{P}B = \angle A\hat{B}P\;$, por (5.1).
Como $\; \angle B\hat{K}P =\angle B\hat{P}A.\;$ e $\;\angle A\hat{P}B = \angle A\hat{B}P, \; \angle B\hat{K}P = \angle A\hat{B}P, \;$ podemos dizer que o triângulo $\;BKP\;$ é isósceles $\;BP=KP\;$
Do mesmo modo, como, por construção, $\;BP=AK\;$, também o triângulo $\;KPA\;$ é isósceles e $\;\angle K\hat{P}A= \angle P\hat{A}K\;$
Sabemos agora que $\; \angle P\hat{A}K + \angle K\hat{P}A =\angle B\hat{P}A.\;$ e que que $\;\angle K\hat{P}A= \angle P\hat{A}K= \angle P\hat{A}B\;$ e podemos escrever $$ \; \angle P\hat{A}B + \angle P\hat{A}B =\angle B\hat{P}A =\angle A\hat{B}P, \;$$ como queríamos. □

Livro I
POSTULADO I
Pede-se, como cousa possível, que se tire de um ponto qualquer para outro qualquer ponto uma linha reta.
POST III
E que com qualquer centro e qualquer intervalo se descreva um círculo.
AXIOMA I.
As cousas que são iguais a uma terceira, são iguais entre si
AXIOMA II.
Se a coisas iguais se juntarem outras iguais, os todos serão iguais
AXIOMA III.
E se de cousas iguais se retirarem outras iguais, os restos serão igauis
PROP. I. PROB.
Sobre uma linha reta determinar um triângulo equilátero
PROP. II. PROB.
De um ponto dado tirar uma linha reta igual a outra linha reta dada.
PROP. V. TEOR.
Em qualquer triângulo isósceles oa ângulos que estão sobre a base são iguais e produzidos os lados iguais os ângulos que se formam debaixo da base são também iguais
PROP. VI. TEOR.
Se dois ângulos de um triângulo forem iguais, os lados opostos a estes ângulos serão também iguais
PROP. XI. PROB.
De um ponto dado em uma linha reta dada levantar uma perpendicular sobre a mesma reta dada
PROP. XXXII. TEOR.
Em todo o triângulo, produzido um lado qualquer, o ângulo externo é igual aos dois internos e opostos e os três ângulos internos de um triângulo qualquer são iguais a dois retos.
.......................................
Livro II
PROP. I. PROB.
Achar o centro de um círculo dado
PROP.VI. PROB
Se uma linha reta fôr dividida em duas partes iguais, e em direitura com ela se puser outra reta, será o retângulo compreendido pela reta tôda e mais a adjunta, e pela mesma adjunta juntamente com o quadrado da metade da primeiro igual ao quadrado da reta, que se compõe da mesma metade, e da outra reta adjunta.
.......................................
LIVRO III
DEFINIÇÂO VI.
Segmento de círculo é uma figura compreendida por uma linha reta e por uma porção da circunferência do círculo
DEFINIÇÂO VII.
O ângulo do segmento é aquele que é formado pela reta e pela porção de circunferência
DEFINIÇÂO VIII.
Um ângulo se diz estar ou existir no segmento quando é formado pelas que de um ponto qualquer, tomado na circunferência do segmento, se tiram para os extremos da reta que é a base do segmento.
PROP. XXXII. TEOR.
Se uma linha reta fora tangnete de um círculo e se do ponto do contacto se tirar outra reta que divida o círculo em dois segmentos, os ângulos que esta reta fizerem com a tangnete serão iguais aos ângulo que existem nos segmentos alternos
PROP. XXXVII. TEOR.
Se de um ponto qualquer fora de um círculo se tirarem duas retas, das quais uma corte o círculo, e a outra chegue somente até a circunferência; e se o retângulo compreendido pela reta inteira que corta o círculo e pela parte dela que fica entre o dito ponto e a parte convexa da circunferência, fôr igual ao quadrado da reta incidente sôbre a circunferência, será a reta incidente tangente do círculo
Livro IV
DEFINIÇÃO III.
Uma figura retilínea se diz inscrita em um círculo quando cada um dos ângulos dela toca a circunferência do circulo
DEFINIÇÃO VII
Uma linha reta se diz inscrita em um círculo quando as extremidades dela estão na circunferência
PROP. I. TEOR.
Em um círculo dado inscrever uma linha reta igual a outra dada, e não maior que o diâmetro do círculo dado. PROP. V. PROB.
Circunscrever um círculo a um triângulo dado.


  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000

10.8.14

Resolver problema de construção usando rotações (análise e síntese)


Problema: Inscrever num paralelogramo dado $\;[ABCD]\;$, um retângulo $\;[EFGH]\;$ cujas diagonais $\;EG,\;FH\;$ formam um ângulo $\; \angle EÔF=\alpha\;$ dado.

Este problema foi considerado no livrinho de A. Lôbo Vilela, Métodos Geométricos para ilustrar o particular método das transformações e o geral método da análise do problema.
Consideremos as retas dos lados do paralelogramo dado $\;a=AB, \;b=BC, \;c=CD, \;d=DA,\;$ E considerem-se conhecidas as propriedades dos paralelogramos relativas aos lados, ângulos, diagonais, centro,...
As diagonais de um paralelogramo bissetam-se. Chamamos $\;O\;$ ao ponto de interseção das diagonais do paralelogramo $\;AC.BD\;$ e as diagonais de qualquer retângulo nele inscrito intersetam-se no mesmo ponto.
Considerando o problema resolvido temos um retângulo $\;[EFGH]\;$ inscrito em $\;[ABCD], \;$, sendo $\; E\;$ um ponto sobre $\;a=AB,\;$ $\;F\;$ sobre $\;b=BC,\;$, $\;G\;$ sobre $\;c=CD,\;$ e $\;H\;$ sobre $\;d=DA.\;$
Sendo $\;O\;$ o centro comum, o ponto $\;F\;$ é a imagem de $\;E\;$ pela rotação de centro $\;O\;$ e ângulo $\;\alpha\;$ - $\;{\cal{R}}_O ^\alpha$. Como a rotação preserva a incidência o ponto $\;E\;$ de $\;a\;$ é transformado pela rotação $\;{\cal{R}}_O ^\alpha\;$ num ponto de $\;a'\;$ e de $\;b$, já que $\;F\;$ é ponto de $\;b\;$.


Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 5}$
  1. Na nossa construção, apresentamos como dados o ângulo $\;\alpha\;$ de amplitude igual ao ângulo das diagonais do retângulo inscrito no paralelogramo $\;[ABCD]\;$ de centro $\;O\;$
  2. $\fbox{n=2}:\;$ Tomamos as retas que contêm os lados do paralelogramo dado
  3. $\fbox{n=3}:\;$ A análise feita acima, dá-nos $\;F\;$ como $\;a'.b\;$, sendo $\;a'= \;{\cal{R}}_O ^\alpha\;(a).\;$ Conhecido $\;F,\;$ determinamos $\;E\;$ como $\;\;{\cal{R}}_O ^{-\alpha}\;(F)\;$

  4. © geometrias, 9 de Agosto de 2014, Criado com GeoGebra


  5. $\fbox{n=4}:\;\;$ $\;E, \;F\;$ são vértices consecutivos do retângulo, cujas diagonais iguais se bissetam em $\;O\;$. Por isso, os restantes vértices são obtidos por transformação de meia volta de centro $\;O\;$:
    $$\begin{matrix} &{\cal{R}}(O, \pi)&&\\ E&\mapsto & G : & \mbox{ou} \quad \{G\} = EO.CD\\ F&\mapsto & H: & \mbox{ou}\quad \{H\} = FO.DA \\ \end{matrix}$$
  6. $\fbox{n=5}:\;\;$ As diagonais $\;EG\;$ e $\;FH\;$ são diâmetros da circunferência de rotação em que afinal se inscreve o retângulo.
    $H\hat{E}F= E\hat{F}G =F\hat{G}H =G\hat{H}E = \frac{\pi}{2}$ inscritos em semicircunferências.

3.8.14

Resolver problema de construção usando o método do problema contrário (5)


Problema: Dado um ponto $\;P\;$ e duas retas paralelas $\;a,\;b\;$ (margens de um rio?), determinar a posição de uma (ponte?) perpendicular para a qual o segmento da perpendicular entre as paralelas seja visto de $\;P\;$ segundo um ângulo $\;\alpha\;$ dado.

Claro que, na nossa construção, começamos por resolver um problema contrário do proposto:
tomamos uma qualquer perpendicular a $\;a,\;b\;$ que intersete $\;a\;$ em $\;A\;$ e $\;b\;$ em $\;B\;$ e determinamos um ponto $\;C\;$ numa posição relativa às paralelas em tudo igual à posição relativa de $\;P\;$, isto é sobre uma reta $\;c\;$, paralela a $\;a\;$ tirada por $\;P\;$

Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 5}$
  1. Na nossa construção, apresentamos como dados as retas $\;a,\:b\;$, um ponto $\;P\;$ e um ângulo $\;\alpha\;$.
  2. $\fbox{n=2}:\;$ O nosso segundo passo consiste em tirar por $\;P\;$ uma reta $\;c\;$ paralela a $\;b\;$ e uma perpendicular a $\;a\;$ cortando $\;a\;$ em $\;A\;$ e $\;b\;$ em $\;B.\;$. Para determinar o lugar geométrico dos pontos de onde se vê o segmento $\;AB\;$ começamos por tirar uma reta por $\;A\;$ a fazer um ângulo $\;\alpha \;$ com $\;AB\;$ (ver O 5º lugar geométrico da lista: - dos pontos P tais que A, B e ângulo APB são dados. )
  3. $\fbox{n=3}:\;$ Apresentamos o lugar geométrico dos pontos dos quais se vê $\;AB\;$ segundo um ângulo $\;\alpha\;$, exatamente os dois arcos tracejados que têm $\;AB\;$ por corda comum (a circunferência de centro $\;O\;$ na interseção da mediatriz de $\;AB\;$ com a reta a fazer um ângulo complementar de $\;\alpha\;$ para que $AÔB = 2\alpha\;$ e todos os ângulos inscritos $\;A\hat{X}B = \alpha\;$, …).
    Desses pontos $\;X\;$, na nossa construção destacamos aqueles que estão em posições relativas a $\;a, \;b\;$ iguais às do ponto $\;P\;$, a saber, $\;E, \;F, \;G, \;H\;$ na interseção dos arcos com a reta $\;c\;$ paralela a $\;b\;$ tirada por $\;P\;$

  4. © geometrias, 3 de Agosto de 2014, Criado com GeoGebra


  5. $\fbox{n=4}:\;$ Para obter uma solução do problema, bastará tirar por $\;P \;$ paralelas a $\:EA\;$ (a intersetar $\;a\;$) ou a $\;EB\;$ (a intersetar $\;b\;$)
  6. $\fbox{n=5}:\;$ Os pontos $\;J\;$ e $\;K\;$ (respetivamente de interseção da paralela a $\;EB\;$ com $\;b\;$ e de interseção da paralela a $\;EA\;$ com $\;a\;$ ) são pontos de uma perpendicular a $\;a\;$ e $\;b\;$ e tais que $\;\hat{P}K =\alpha.\;$
    Outras soluções podem ser encontradas do mesmo modo.

22.7.14

Resolver problema de construção usando o método do problema contrário (3)


Problema: Num quadrado de lado $\;L,\;$ inscrever um quadrado de lado $\;l.\;$
Vilela, António Lôbo. Métodos GeométricosMétodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
Este é um bom exemplo da utilidade do método contrário.
O problema proposto consiste em construir um quadrado $\;[ABCD]\;$ de lado $\;L\;$ e a partir dele construir um outro quadrado $\;[EFGH]\;$ de lado $\;l\;$ de tal modo que cada um dos seus vértices incida num lado do quadrado de lado $\;L.\;$
Ao resolvermos o problema contrário, resolvido fica o problema proposto.
O problema contrário do proposto consiste em construir um quadrado $\;[EFGH]\;$ de lado $\;l\;$ e a partir dele construir um outro quadrado $\;[ABCD]\;$ de lado $\;L\;$ de tal modo que cada um dos seus lados incida num vértice do quadrado de lado $\;l.\;$
A sequência das três partes da construção pode ser vista, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, 3}$
  1. Começamos então pela construção de um quadrado $\;[EFGH]\;$ de lado $\;l.\;$
  2. © geometrias, 22 de Julho de 2014, Criado com GeoGebra


  3. Como queremos construir um quadrado de lado $\;L\;$ circunscrito a $\;[EFGH]\;$ precisamos de construir quatro segmentos de comprimento $\;L\;$ cada um a passar por um vértice do quadrado de lado $\;l\;$ e tais que os seus extremos se encontrem sobre circunferências cujos diâmetros sejam lados consecutivos de $\;[EFGH].\;$ Para isso, começámos pelos lados $\;HG\;$ e $\;HE\;$ e as circunferências de diâmetros $\;HE\;$ e $\;HG\;$ e procuramos a reta que passando por $\;H,\;$ determine um segmento de comprimento $\;L\;$ nas duas circunferências que se cortam em $\;H.\;$ Como vimos, na vinheta anterior, bastar-nos-á determinar um ponto $\;D\;$ de interseção da circunferência de diâmetro com extremos nos pontos médios dos lado $\;HE\;$ e $\;HG\;$ com a circunferência centrado no ponto médio de $\;HG\;$ e raio $\;\frac{ L}{2} ,\;$ para obter uma corda de tamanho $\;\frac{ L}{2} .\;$
  4. A reta paralela a essa que passa por $\;H\;$ determina nas circunferências de diâmetros $\;HE\;$ e $\;HG\;$ um segmento $\;CD\;$ de comprimento $\;L\;$ a passar por $\; H.\;$ E o quadrado $\;[ABCD]\;$ de lado $\;L\;$ pode determinar-se pelas perpendiculares a $\;CD\;$ em $\;D,\;$ a $\;CD \;$ em $\;C,\;$ a $\; DA\;$ em $\;A.\;$ Os vértices assim obtidos são vértices de triângulos retângulos inscritos em semicircunferências cujos diâmetros são lados do quadrado $\;[EFHGH]$
Notas:
  1. Para que o problema seja possível (tenha solução) é preciso que $\;L\;$ seja no máximo igual à diagonal do quadrado de lado $\;l\;$, seja, que $\;L\leq l\sqrt{l}. \;$ O mais seguro teria sido considerar $\;l \leq L\leq l\sqrt{l}, \;$ cuidado que não tivemos.
  2. O problema proposto podia resolver-se sem recurso ao problema contrário. Como sabemos, uma circunferência com centro no centro do quadrado $\;[ABCD]\;$ e de raio igual a metade da diagonal de um quadrado de lado $\;l\;$ que é $\; \displaystyle \frac{l\sqrt{2}}{2}\;$ perfeitamente construtível com régua e compasso. Esta circunferência é circunscrita ao quadrado $\;[EFGH]\;$ e, por isso, interseta lados opostos do quadrado $\;[ABCD]\;$ circunscrito em vértices opostos do quadrado $\;EFGH]\;$ inscrito.

21.7.14

Resolver problema de construção usando análise e síntese


Problema: Por um dos pontos de interseção de duas circunferências secantes, conduzir uma reta que determine nas duas circunferências um segmento de comprimento dado.
Vilela, António Lôbo. Métodos GeométricosMétodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
A publicação da resolução deste problema tornou-se necessária como parte da construção da resolução de um outro problema que entendemos dever publicar, como ilustração do método do problema contrário proposto no mesmo livro.
Pode seguir os passos da análise do problema fazendo variar os valores de $\;n\;$ entre 1 e 3 no cursor $\;\fbox{n}$. Para $\;n=4\;$ concluirá a primeira solução. Os valores $\;5\leq n\leq 8$ mostrarão a construção da segunda solução (para $\;P\;$, claro)
  1. Os dados deste problema são: um comprimento $\;s\;$, duas circunferências $\;(C)\;, \;(C')\;$ secantes e um ponto $\;P\;$ da interseção $\;(C).(C')\;$
  2. Supor o problema resolvido é considerar encontrado uma reta a passar por $\;P\;$ a cortar $\;(C)\;$ em $\;A\;$ e $\;(C')\;$ em $\;A'\;$ (para além de $\;P\;$), de tal modo que $\;AA'=s.\;$ Como podemos encontrar $\;A, \;A'$ ?
    Sabemos que $\;AA' = AP +PA', \;$ é soma de duas cordas, uma de cada circunferência.
  3. Os pontos médios $\;M\;$ e $\;M'\;$ respetivamente de $\;AP\;$ e $\;PA'\;$ são tais que
    • $\;A\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M\;$ e $\;A'\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M'\;$<\li>
    • $\;MM' =MP+PM'= \displaystyle \frac{1}{2}(AP+PA')=\frac{1}{2}(AA')= \frac{s}{2}\;$
    • $\; CM \perp AP \wedge C'M' \perp PA' \;$ e, por isso, $\;CM \parallel C'M'\;$ ou $\;[MCC'M']\;$ é um trapézio retângulo.

    Isto quer dizer que bastará determinar o ponto $\;D\;$ tal que     $\;CD \perp C'D \wedge C'D =MM'=\displaystyle \frac{s}{2}\;$
    que é o mesmo que dizer que $\;D\;$ é simultaneamente ponto da circunferência de diâmetro $\;CC'\;$ e da circunferência de centro $\;C'\;$ e raio $\;\displaystyle \frac{s}{2}\;$
  4. Com os dados do problema podemos determinar $\;D\;$. Como a reta $\;CD\;$ (ou $\;CM\;$ é perpendicular a $\;AA'\;$ e $\;C'D\;$ também é perpendicular a $\;CD,\;$ para obter a reta $\;AA'\;$ (ou $\;MM'\;$) basta tirar por $\;P\;$ a paralela a $\;C'D\;$

  5. © geometrias, 20 de Julho de 2014, Criado com GeoGebra


  6. Para a segunda solução, que existe no caso da nossa figura, começamos por determinar $\;D'\;$ como intersecção da circunferência centrada em $\;C\;$ e raio $\; \displaystyle \frac{s}{2}\;$ com a circunferência de diâmetro $\;CC'\;$ de modo que o triângulo $\;[CC'D']\;$ seja retângulo em $\;D'\;$
  7. A paralela a $\;CD'\;$ tirada por $\;P\;$ é a reta que procuramos. A reta $\;C'D'\;$ interseta esta paralela em $\;N'\;$ e a paralela a $\;C'D'\;$ tirada por $\;C\;$ interseta-a em $\;N.$
  8. A paralela a $\;CD'\;$ tirada por $\;P\;$ determina duas cordas $\;BP\;$ em $\;(C)\;$ e $\;PB'\;$ em $\;(C')\;$ das quais $\;N\;$ e $\;N'\;$ são pontos médios já que $\;CN \perp BB'\;$ e $\;C'D' \perp PB'$
  9. Como $\; \displaystyle \frac{s}{2}=CD' = NN',\;$ passando por $\;P, \;$ $\; BB' = BP+PB'= 2(NP+PN')=2NN'=\displaystyle 2\frac{s}{2}=s$     □
Nota sobre as condições de existência de soluções.
A existência de soluções depende de $\;D\;$. Vimos que $\;CD'=MM'=\displaystyle \frac{s}{2}\;$ ou $\;C'D =NN'=\displaystyle \frac{s}{2}\;$ são cordas da circunferência de diâmetro $\;CC'\;$ e, por isso, $\;CD'= C'D = \displaystyle \frac{s}{2} \leq CC'\;$. Assim só há soluções quando $\;s\leq 2CC'.\;$
Para $\;s= 2CC'\;$ (ou quando $\;s\;$ atinge o seu valor máximo), $\;AA'\;$ e $\;BB'\;$ são paralelas de $\;CC'\;$ tiradas por $\;P\;$, logo $\;AA'=BB'\;$ o que quer dizer que nesse caso há uma só solução.
Se $\;s <2CC', \;$ há duas direções para as secantes por $\;P\;$ e comprimento $\;s:\;$ $\;\;s=AA', \; AA'\parallel C'D\;$ e $\;s=BB', \; BB'\parallel CD'\;$ e, em consequência , pode haver duas soluções, no caso de cada uma das paralelas tiradas por $\;P\;$ a $\;C'D\;$ e a $\;CD'\;$ cortar as duas circunferências $\;(C), \; (C')\;$. No limite, estas direções podem ser a das tangentes $\;t, \; t'\;$ tiradas por $\;P\;$ a $\;(C)\;$ e $\;(C')\;$. Se conduzirmos por $\;C'\;$ paralelas a essas tangentes, elas determinam cordas, chamemos-lhe $\;u, \; u'\;$ na circunferência de diâmetro $\;CC'\;$ . Verifica-se que há uma só solução se $\; 2\times mín \{u,\;u'\} < s < 2\times máx \{u,\; u'\}\;$ e duas soluções quando $\; 2\times máx \{u,\; u'\} < s < CC'. $