23.10.19

Restauração - 02/03/2010 - Dividir [AB] (média e extrema razão; ouro)

Dado o segmento AB, pretendemos obter o ponto M que o divide em média e extrema razão.

  1. Mostramos um segmento [AB]
  2. Construímos um quadrado de lado AB: seja ABCD.

  3. E determinamos o ponto E médio de AD.

  4. Com centro em E e raio EB, traçamos o arco que determina F na semi-recta DA, tal que EF=EB
    A diagonal DG do rectângulo CDFG intersecta o segmento AB no ponto M pretendido no sentido de ser |AM|/|MB|=|BA|/|AM|, ou tal que |AM|2=|MB|.|BA|




    Este rectângulo é tal que a razão entre os seus lados é Φ ≈ 1,618. A este número Φ chamamos número de ouro e ao rectângulo chamamos rectângulo de ouro.

    O ponto M que satisfaz simultaneamente as condições |AM|+|MB|=|AB| e |AM|^2= |AB|.|BM| é único. se tomássemos a diagonal CF do mesmo retângulo, obtínhamos como interseção de CF com AB um ponto N de [AB] tal que |AN|+|NB|= |AB| e para o qual |BN|2 =|NA|.|AB|.

  5. O bloco 5 da nossa construção dinâmica é para chamar a atenção para outros dois pontos sobre a reta AB (colineares com A e B)interessantes do mesmo ponto de vista e obtidos de modo análogo: considerando o ponto F1 da semi-reta AD: |EB|=|EF1| e retângulo [DCG1F1] de dimensões |CD|e |DF1|. As retas diagonais deste retângulo intersectam a reta AB em pontos interessantes. Mostramos a intersecção H da diagonal G1D com BA que satisfaz as condições BH=BA+AH e |HA|^2 =|AB|.|BH|

18.10.19

Os flancos de um triângulo são equivalentes

A figura que se apresenta a seguir foi construída assim:
  1. a partir de um triângulo [ABC] de lados a=BC, b=CA e c=AB,
  2. construiram-se quadrados - a2, b2 e c2 - sobre os seus lados, a saber: a -> [BAbAcC], b -> [CBcBaA] e c -> [ACaCbB] e finalmente
  3. os triângulos [ABaCb], [BCbAb], [CAcBc] a que chamamos flancos de [ABC]


Com recurso a transformações geométricas, prova-se que são equivalentes os triângulos [ABaCb], [BCbAb], [CAcBc] e [ABC].
Floor van Lamoen, Friendship Among Triangle Centers. Forum Geometricorum (Volume 1 (2001) 1-6), Editor: Paul Yiu.
Nota:
Uma rotação de 90° em torno de A faz corresponder a [AAbAc], flanco-A de [ABC], um triângulo [AA'bA'c] tal que
  • A,A'b,C são colineares sendo |AA'b|=|AC|, ou seja, A é o ponto médio do segmento [A'bC]
  • e A'c coincide com B
e, por isso, [BA] é uma mediana do triângulo [BA'bC] e os triângulos [A'bBA] e [ABC]têm igual área ou são equivalentes.