Mostrar mensagens com a etiqueta circuncírculo. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta circuncírculo. Mostrar todas as mensagens

7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16

14.2.18

Reta de Simson: caso de colinearidade das projeções de um ponto sobre três retas



TEOREMA DE SIMSON: Se de um ponto tomado sobre a circunferência circunscrita a um triângulo baixarmos perpendiculares a cada lado do triângulo, os pontos assim obtidos estão em linha reta
PROBLEMA: Demonstrar que são colineares os pés das perpendiculares aos lados de um triângulo tiradas de qualquer ponto da circunferência circunscrita

F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Théorème de Simson. 22. Si d'un point pris sur la circonférence circonscrite à un triangle, on abaisse des perpendiculaires sur chaque côté du triangle, les trois points ainsi obtenus sont en ligne droite.
Ce théorème s'énonce quelque fois comme il suit:
Les projections d'un point quelconque de la circonférence circonscrite à un triangle, sur chaque côté de ce triangle, sont en ligne droite.



$\;\fbox{n=1}:\;$ Apresentam-se um triângulo $\;[ABC],\;$ a circunferência $\;(ABC)\;$ e um ponto $\;P\;$ nelaa
$\;\fbox{n=2}:\;$ As perpendiculares tiradas por $\;P\;$ a cada uma das retas $\;BC, \;CA, \; AB\;$ do trilátero $\;ABC,\;$ determinam os respetivos pés $\;D, \;E, \;F.\;$
$\;\fbox{n=3}:\;$ E, para a posição de $\;D, \;E, \;F\;$ da nossa figura inicial,ficam determinados dois quadriláteros convexos $\;[FAEP],\;[PCDE]\;$ que são inscritíveis, porque
  • o primeiro tem ângulos retos opostos, obviamente de soma rasa - $\;P\hat{E}A, \;A\hat{F}P;\;$ e
  • o segundo tem dois triângulos retângulos com a mesma hipotenusa $\;PC:\;\; [CDP], \;[PEC], \;]$ que é o diâmetro da comum circunscrita aos dois triângulos retângulos, i.e, a passar pelos pontos $\;P, \;C, \;D, \;E.\;$

Para outras posições de $\;P\;$ sobre a circunferência $\;(ABC),\;$ teremos naturalmente de considerar outros quadriláteros, mas serão análogos os raciocínios a fazer para provar que os pontos $\;D,\;E, \;F\;$ são colineares.


13 fevereiro 2018, Criado com GeoGebra



Fixemo-nos no caso da nossa figura inicial, em que $\;P\;$ está no arco $\;(CA)\;$ da circunferência $\;(ABC);\;$ e $\;D \in [BC], \;E \in [AC], \; F \in \dot{B}A \setminus [BA].\;$
Nestas condições, podemos dizer que $\;D, E, F\;$ são colineares se e só se $\;D\hat{E}C = F\hat{E}A, \;$ já que, como o vértice $\;E\;$ é ponto de uma reta $\;AC\;$ dada, aqueles ângulos só são iguais se forem verticalmente opostos, i.e. os segundos lados estiverem sobre uma mesma reta.
Finalmente
  • Sabemos que $\;\angle P\hat{A}F\;$ é suplementar de $\;\angle B\hat{A}P\;$, já que $\;D\;$ é um ponto da reta $\;BA;\;$
  • e também são suplementares os ângulos $\;\angle B\hat{A}P\;$ e $\;\angle P\hat{C}B\;;$ opostos no quadrilátero $\;[PABC]\;$ inscrito na circunferência $\;(ABC)\;$
  • em consequência, $\;\angle P\hat{A}F =\angle P\hat{C}B.\;$
  • Como $\;\angle P\hat{A}F\;$ (ou $\;\angle P\hat{C}B\;$ ) é complementar de $\;\angle F\hat{P}A\;$ e $\;\angle P\hat{C}D\;$ (ou $\;\angle P\hat{C}B\;$) é complementar de $\;\angle D\hat{P}C\;$ podemos concluir que $\;\angle D\hat{P}C= \angle F\hat{P}A\;$
  • Considerando a circunferência $\;(PFAE)\; $ os lados dos ângulos $\;\angle F\hat{P}A\;$ e $\;\angle F\hat{E}A\;$ compreendem o mesmo arco $\; \widehat{FA}\;$ dessa circunferência, o que nos permite concluir que $\;\angle F\hat{P}A = \angle F\hat{E}A\;$
  • e do mesmo modo, concluímos que são iguais os ângulos inscritos no mesmo arco $\;\widehat{CD}\;$ da circunferência $\;(CDEP):\;\;\; \angle C\hat{E}D =\angle C\hat{P}D\;$
  • Resumindo e concluindo $$\; \left(\angle D\hat{P}C= \angle F\hat{P}A\; \wedge \;\angle F\hat{P}A = \angle F\hat{E}A\; \wedge \;\angle C\hat{E}D =\angle C\hat{P}D \right) \Rightarrow \angle F\hat{E}A = \angle C\hat{E}D, \;$$ ou seja os pontos $\;D, \;E,\;F\;$ estão sobre uma mesma reta □
$\;\fbox{n=4}:\;$ Apresenta-se a reta onde incidem os pés das perpendiculares sobre cada um dos lados de triângulo tiradas por um ponto $\;P\;$ da circunferência circunscrita ao triângulo. A cada posição do ponto $\;P\;$ na circunferência corresponderá uma reta a que chamamos reta de Simson (ou de Wallace?)

13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.