Mostrar mensagens com a etiqueta Pitágoras. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Pitágoras. Mostrar todas as mensagens

13.9.17

Áreas: Problemas de optimização (2)

Problemas Sangaku de Optimização

Nesta entrada, embora todas as construções sejam feitas com régua e compasso, recorremos a operações algébricas, conceitos de função polinomial, derivada, etc.

O enunciado adaptado do problema desta entrada é:
Seja um quadrado $\;[BCAD],\;$como se mostra na figura abaixo. Consideremos as diagonais $\;AB, \;CD\;$ e $\;M\;$ o seu ponto de intersecção. Sobre $\;CD, \;$ tomemos os pontos $\;P,\;\;R\;$ simétricos eme relação a $\;M.\;$ Obtemos um rombo (ou losango) $\;BPAR.\;$ Consideremos também o quadrado $\;PQRS.\;$
Para que valor ou valores dos comprimentos $\;PQ\;$ (lados dos quadrados $\; PQRS\;$) é que os valores das áreas assinaladas a vermelho atingem o seu máximo?

Da figura à esquerda, já descrita no enunciado, as retas das diagonais $\;AB, \;CD\;$ são eixos de simetria e, por isso, o problema proposto fica resolvido determinando qual é o valor do comprimento de $\;PQ\;$ para o qual $\;PAQ\;$ tem área máxima.

12 setembro 2017, Criado com GeoGebra

O que vamos fazer é estudar a dependência de valores $\;y=OY\,$ das áreas de $APQ$ em função dos valores dos comprimentos dos lados $\;x=OX=PQ\;$ dos quadrados $\;PQRS.\;$
As diagonais dos quadrados são iguais $\;AB=CD, \;PR=QS,\;$ bissectam-se $\;QM=MP \;$ perpendicularmente $\;C\hat{M}A =P\hat{M}Q =1\;$ reto, sendo por isso $\;PQ^2 = PM^2+MQ^2 = 2PM^2\; \Leftrightarrow x=\sqrt{2}PM \Leftrightarrow PM^2=\displaystyle \frac{x^2}{2}\;$ e, designando por $\;2a\;$ o comprimento fixo de $\;AB,\;$ e por $\;2d\;$o valor dos comprimentos variáveis das diagonais de $\;PQRS,\;$ sobre a área $\;y\;$ do triângulo $\;PAQ$ que é igual ao triângulo $\;PAM\;$ subtraído do triângulo $\;MPQ,\;$ podemos escrever $$y=\frac{a\times d}{2} - \frac{d^2}{2} = \displaystyle \frac{\sqrt{2}ax}{2} - \frac{\displaystyle\frac{x^2}{2}}{2}=\frac{2\sqrt{2}ax-x^2}{4}$$ Quando $\;P\;$ toma a posição de $\;M, \;\; P\equiv M\equiv Q \ldots \;$ então $\;x=0.\;$ O maior valor que $\;x=PQ\;$ pode atingir é quando $\;P = C\;$ e $\;Q=A\;$: $\;\;\;PQ=AC=\sqrt{2}a.$
Para o nosso problema, $\;x\;$ pode tomar todos os valores entre $\;0\;$ e $\;\sqrt{2}a:\;$ $$0\leq x=OX \leq AC=\sqrt{2}a$$ e, em consequência, como $$\;y=\frac{2\sqrt{2}ax-x^2}{4}= \frac{-(x^2 - 2\sqrt{2}ax +2a^2)+2a^2}{4}= \frac{1}{4}(2a^2 -(x-\sqrt{2}a)^2$$ função polinomial do segundo grau em que $\;x^2\;$ tem coeficiente negativo $\;\displaystyle -\frac{1}{4}\;$ $$y=\frac{1}{4} (2a^2-(x-\sqrt{2}a)^2 = 0 \Leftrightarrow \;x=0 \vee x=\sqrt{2}a $$ $y\;$ atinge o seu valor máximo para o valor de $\;x\;$ médio de $\;[0,\; \sqrt{2}a] \;$ que é $\; \displaystyle \frac{\sqrt{2}a}{2}.\;$
Nota: Clicando no botão de animação, na esquerda ao fundo, pode visualizar os traços dos pontos de abcissas $\;x\;$ entre $\;0\;$ e $\;\;\sqrt{2}a \;$
  • $\;L\;$ que tem como ordenada $\;y=OY\;$ o valor associado à área do triângulo $\;PAQ\;$ correspondente a cada valor de $\;x \ldots\;$
  • $\;L_t\;$ que tem como ordenada $\;y_t= OY_t\;$ o valor associado á área de toda a superfície vermelha $\;y_t = 4 y =4 PAQ \;$ correspondente a cada valor $\;x\;$ de comprimento do lado do quadrado $\;PQRS.\;$

Sangaku Optimization Problems:
(All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
Ohma Shinmeislsya shrine, circa 1821, Nakamura Tokikazu
Problem Statement: A square of fixed side length is constructed. If we shrink the vertical diameter of the square and keep the side lengths fixed, a rhombus is formed. Within the rhombus another square can be formed. For what side length of the inner square will the area between the rhombus and the inner square be maximized?
Sacred Mathematics: Japanese Temple Geometry. Fukagawa, H. & Rothman, T. 2008.

27.2.15

Elementos: Teorema de Pitágoras.


Optamos por escolher alguns exemplos de enunciados e demonstrações de #"Os Elementos" para ilustrar o que Euclides tinha em mente quando usava a palavra igualdade associada à construção de conceitos diferentes. Temos andado a abordar resultados relacionados com áreas de figuras planas, apresentando resultados muito conhecidos (por enunciados atuais), mas transcritos do original para perceber como era ao tempo da génese das noções de geometria escrita.

TEOREMA DE PITÁGORAS
PROP. XLVII. TEOR.

Em todo o triângulo retângulo o quadrado feito sôbre o lado oposto ao ângulo reto, é igual aos quadrados formados sôbre os outros lados, que fazem o mesmo ângulo reto .


© geometrias. 28 de Fevereiro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ (no selector no centro ao fundo da janela de construção) verá o desenvolvimento da figura relativa à demonstração.

Seja o triângulo retângulo ABC, cujo ângulo reto seja BAC. Digo que o quadrado feito sôbre o lado BC é igual aos quadrados descritos sôbre os lados BA, AC, que formam o ângulo reto BAC.
Descreva-se sôbre BC o quadrado BDEC (Pr. 46.1.*), e sôbre BA, AC os quadrados GB, HC. Pelo ponto A tire-se AL, paralela (Pr. 31.1. **) a BD, ou CE, tirem-se também as retas AD, FC. Porque os ângulos BAC, BAG são retos (Def. 30. ***), as duas retas CA, AG estão em direitura uma com outra (Pr. 14.1. ****). O mesmo será a respeito das duas AB, AH. Os ângulos DBC, FBA, por serem retos, são iguais. Ajunte-se-lhes o mesmo ângulo ABC. Logo, o total DBA será igual ao total FBC (Ax. 2.*****). E sendo as duas AB, BD iguais às duas FB, BC, cada uma a cada uma, e o ângulo DBA = FBC, será o triângulo ABD = FBC outro triângulo (Pr. 4.1.******). Mas o paralelogramo BL é o dôbro (Pr. 41.1.*******) do triângulo ABD, porque está sôbre a mesma base BD, e entre as mesmas paralelas BD, AL; e o quadrado GB é o dôbro do triângulo FBC, porque tem a base comum FB, e estão q as mesmas paralelas FB, GC. Logo, sendo iguais os dobros de quantidades iguais (Ax. 6.********), deve ser o paralelogramo BL igual ao quadrado GB. Do mesmo modo, tiradas as retas AE, BK, se demonstra, que o paralelogramo CL é igual ao quadrado HC. Logo, o quadrado inteiro BDEC, feito sôbre o lado BC oposto ao ângulo reto BAC, é igual aos dois quadrados GB, HC formados sôbre os lados BA, AC, que fazem o mesmo ângulo reto BAC. □

*PROP XLVI.PROB.
Sôbre uma linha reta dada descrever um quadrado
**PROP. XXXI. PROB.
De um ponto dado conduzir uma linha reta paralela a outra linha reta dada
*** DEFINIÇÃO XXX.
Entre as figuras quadriláteras, o quadrado é o que é juntamente equilátero e retângulo
**** PROP.XIV. TEOR.
Se em um ponto de uma linha reta qualquer concorrerem de partes opostas duas retas, fazendo com a primeira reta os ângulos adjacentes iguais a dois retos, as retas, que concorrem para o dito ponto, estarão em direitura uma da outra.
***** AXIOMA II
Se a cousas iguais se juntarem outras iguais, os todos serão iguais.
****** PROP. IV. TEOREMA.
Se dois triângulos tiverem dois lados iguais a dois lados, cada um a cada um, e os ângulos, compreendidos por êstes lados, forem também iguais; as bases e os triângulos, e os mais ângulos, que são opostos a lados iguais, serão também iguais.
*******PROP. XLI. TEOR.
Se um paralelogramo e um triângulo estiverem sobre a mesma base, e enre as mesmas paralelas, o paralelogramo será o dobro do triângulo.
********AXIOMA VI
As quantidades, das quais cada uma por si faz o dôbro de outra quantidade, são iguais.

Nota: Dedicadas ao Teorema de Pitágoras, há mais 50 entradas com diferentes enunciados, construções, demonstrações, aplicações, ... publicadas neste Lugar Geométrico.
  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000

13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.

3.6.10

Generalização do Teorema de Pitágoras com demonstração à vista desarmada

No seu livro"Mirar y Ver. Nivola. Tres Cantos:2004" Guzmán dá grande importância à capacidade de olhar de modos diferentes e de perspectivas diferentes para as figuras, decompostas de modos diferentes e comparando áreas. Não se trata de um processo para conjecturar, mas mais do que isso: saber olhar, pode ser saber demonstrar. A escrita pode reduzir-se à descrição do que se viu, ou seja, a demonstração esteve na construção e no olhar, na construção do olhar.

Um dos resultados, apresentado como exemplo, é muito potente. É uma generalização do Teorema de Pitágoras (atribuída a Pappus) de que pouco se fala. Trabalha com figuras decompostas em figuras equivalentes de vários modos que é o que fazemos com o Teorema de Pitágoras. Só que este resultado se aplica a qualquer triângulo e o T. de Pitágoras aparece como um caso particular para os triângulos rectângulos.


Considere-se um triângulo ABC, qualquer. Sobre dois dos seus lados, construam-se dois paralelogramos - [AA1B1B], q na figura - e [AA2C2C], r. Os pontos a verde A,B, C, B1 e C2 são livres. Pode movê-los livremente.
O interessante é que, para cada par (q, r) de paralelogramos sobre os lados de um dos lados AC e AB de um triângulo qualquer, há um terceiro paralelogramo sobre BC que tem área igual à soma das áreas de q e r.
Que paralelogramo é esse?
Basta clicar no botão Construir? para acompanhar a construção de um tal terceiro paralelogramo.





Se clicou em Construir?, pode ver as dependências e mesmo adivinhar o que é preciso fazer e por que ordem para determinar o paralelogramo [CC3B3B] que tem área igual a q+r.

Preciso é determinar o ponto P, intersecção das rectas A1B1 e A2C2. E o paralelogramo [CC3B3B] é tal que A1B3= PA, sendo A1B3 e PA paralelos.

Clicar sobre o botão Demonstrar? confirmará, vendo, que o paralelogramo [BSPA] é obviamente equivalente a [BB3RQ] já que BB3=RQ=BS=PA e a altura relativa a RQ e PA é a distância entre duas mesmas paralelas. E é claro que q é equivalente a [BSPA].
Do mesmo modo, r é equivalente a [ACTP] e a [QRC3C].