Mostrar mensagens com a etiqueta Teorema de Pitágoras. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Teorema de Pitágoras. Mostrar todas as mensagens
14.7.17
26.3.15
Elementos: álgebra geométrica (Prop. XI do Livro II)
Continuando:
Dividir uma linha reta de sorte que o retângulo de tôda e de uma parte seja igual ao quadrado da outra parte ou, de outro modo, Dado um segmento de reta $\;AB,\;$ determinar um ponto $\;H\;$ que o divide de tal modo que o retângulo de lados iguais a $\;AB\;$ e $\;BH;$ seja igual em área ao quadrado de lado $\;AH\;$ $$AB \times BH = AH^2 ,$$
Passos da construção:
- (46.1) - Construímos o quadrado de lado $\;AB\; - ACDB \;$
- (10.1) - Determinamos $\;E\;$ que divide $\;AB\;$ em partes iguais na interseção de $\;AC\;$ com a reta definida pelos pontos de interseção das circunferências $\;(A, AC),\; (C, CA)\;$
- (Post. 1.1) - Traçamos a reta $\;EB\;$
- (3.1) Determinamos sobre a reta $\;AC\;$ o ponto $\;F\;$ de tal modo que $\;EF=EB\;$ um dos pontos de interseção de $\;AC\;$ com $\;(E, EB)\;$ (Post 3)
- (46.1) - Construímos o quadrado de lado $\;AF\;$ para o lado de $\;B\;$ - $\; AFGH\;$ em que o vértice $\;H\;$ é um ponto de $\;AB\;$, entre $\;A\;$ e $\;B\;$
- O ponto $\;H\;$ assim determinado por construção é o ponto que procuramos. Resta provar que o retângulo de lados $\;AB\;$ e $\;BH\;$ é igual em área ao quadrado de lado $\;AH\;$ - $\;AFGH\;$
© geometrias. 26 de Março 2015, Criado com GeoGebra
Prova:
- Porque $\;AC\;$ está dividida em duas partes iguais por $\;E\;$ que se prolonga em reta por $\;AF\;$, nas condições de (6.2), o retângulo $\;CFGK\;$ de lados $\;CF\;$ e $\;FA\;$ acrescentado do quadrado de lado $\;AE\;$ é igual em área ao quadrado de lado $\;EF.\;$
- Como $\;EF=EB, \;$ o retângulo $\;CFGK\;$ acrescentado do quadrado de lado $\;AE\;$ também é igual ao quadrado de lado $\;EB\;$
- Como o ângulo $\;E\hat{B} A\;$ é ângulo do quadrado $\;ACDB\;$, reto, pelo Teorema de Pitágoras (47.1), o quadrado de lado $\;AB\;$ acrescentado do quadrado de lado $\;AE\;$ é igual ao quadrado de lado $\;EB\;$
- Removendo o mesmo quadrado de lado $\;AE\;$ às duas figuras construídas iguais ao quadrado de lado $\;BE,\;$ ou de lado $\;EF\;$, ficamos a saber que o retângulo de lados $\;FC, \;FA=AH\;$ é igual ao quadrado de lado $\;AB\;$<\li>
- O retângulo $\;FCKG\;$ é o retângulo $\;FC, \;FA\;$, por ser $\;AF=FG\;$ é igual em área ao quadrado de lado $\;AB\;$
- Se removermos $\;ACKH\;$
- ao retângulo $\;FCKH\;$ sobra-nos o quadrado de lado $\;AH\;$
- ao quadrado $\;ACDB\;$ sobra-nos $\;HKDB,\;$ (de lados iguais a $\;AB\;$ e $\;HB\;$)
Livro I
PROP. XXXVI. TEOR.
Os paralelogramos, que estão postos sôbre bases iguais, e entre as mesmas paralelas, saão iguais
PROP. X. PROB.
Dividir em duas partes iguais uma linha reta de um comprimento dado.
POSTULADO I
Pede-se, como cousa possíve, que se tire de um ponto qualquer para outro qualquer ponto uma linha reta.
PROP. III. PROB.
Dadas duas linhas retas desiguais, cortar da linha maior uma parte igual à linha menor.
POST III
(Pede-se, como cousa possíve,)E que com qualquer centro e qualquer intervlao se descreva um círculo.
PROP. XLVII. TEOR.
Em todo o triângulo retângulo o quadrado feito sôbre o lado oposto ao ângulo reto, é igual aos quadrados formados sôbre os outros lados, que fazem o mesmo ângulo reto
AXIOMA III
E se de cousas iguais se tirarem outras iguais, os restos serão iguais .......................................
Livro II
PROP.VI. PROB
Se uma linha reta fôr dividida em duas partes iguais, e em direitura com ela se puser outra reta, será o retângulo compreendido pela reta tôda e mais a adjunta, e pela mesma adjunta juntamente com o quadrado da metade da primeiro igual ao quadrado da reta, que se compõe da mesma metade, e da outra reta adjunta.
- Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
- Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000
5.3.15
Elementos: O recíproco do Teorema de Pitágoras (por Euclides)
Transcrevemos ainda de "Os Elementos" o enunciado e demonstração do recíproco do Teorema de Pitágoras, última proposição do Livro I. Muitas discussões sobre a introdução (ou não) em aulas do ensino básico acabaram sempre (ou quase) em derrotas de quem tal defendia. A derrota sente-se logo ao apresentar oralmente a demonstração que naturalmente utiliza vários resultados anteriormente provados, incluíndo o mais próximo teorema da sequência (o próprio teorema de Pitágoras).
Se o quadrado feito sôbre um lado de um triângulo fôr igual aos quadrados dos outros dois lados, o ângulo compreendido por êstes dois lados será reto .
© geometrias. 5 de Março 2015, Criado com GeoGebra
Seja o quadrado feito sôbre o lado BC do triângulo ABC igual aos quadrados feitos sôbre os lados BA, AC. Digo que o ângulo BAC é reto.
Levante-se do ponto A sôbre AC a perpendicular AD (*Pr. 11.1.), e ponha- se AD = BA, e tire-se DC. Sendo DA = AB, será o quadrado sôbre DA igual ao quadrado sôbre AB. Ajunte_se-lhes o quadrado de AC. Os quadrados de DA, AC serão iguais aos quadrados de BA, AC. Mas o quadrado de DC é igual aos quadrados de DA, AC, por ser o ângulo DAC reto (**Pr. 47.1. ), e o quadrado de BC se supõe igual aos quadrados de BA, AC. Logo, o quadrado de DC será igual ao quadrado de BC. Logo, será DC = CB. Sendo pois DA = AB, e AC comum, as duas DA, AC serão iguais às duas BA, AC. Mas é a base DC = BC outra base. Logo, será o ângulo DAC = BAC (***Pr. 8.1.). Mas o ângulo DAC é reto. Logo, também o ângulo BAC será reto. □
- Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
- Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000
Subscrever:
Mensagens (Atom)