Mostrar mensagens com a etiqueta incírculo. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta incírculo. Mostrar todas as mensagens

7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16

22.10.17

Áreas: Problemas de optimização(3)

Problemas Sangaku de Optimização

Nesta entrada, embora todas as construções sejam feitas com régua e compasso, recorremos a operações algébricas, conceitos de função polinomial, derivada, etc.

O enunciado adaptado do problema desta entrada é:
Tomamos um quadrado $\;ABCD\;$ de papel que vamos dobrar - fixando um ponto ($\;P\;$) num dos lados ($\;AB,\;$ por exemplo) levamos um dos vértices desse lado ($\;A,\;$ por exemplo) até um ponto ($\;A’\;$) do lado ($\;BC\;$) oposto do lado ($\;AD.\;$) Fixadas as posições (de $\;P \in AB\:$ e de $\;A’ \in BC\;$ tais que $\;AP=PA’\;$) dobramos o papel quadrado pelo segmento de reta da dobra de extremo $\;P.\;$ Obtemos assim um trapézio a cobrir parte de um outro trapézio que se manteve inalterável e a parte do original quadrado que ficou a descoberto é composta por dois triângulos retângulos, um retângulo em $\;B\;$ e outro retângulo em $\;C.\;$
Para cada $\;P\;$ de $\;AB\;$ há uma só dobragem, se houver.
Pretende-se saber a posição de $\;P\;$ sobre $\;AB\;$ para a qual o círculo inscrito no triângulo retângulo em $\;C\;$ tem área máxima.

  1. Na primeira janela mostram-se os quatro vértices do quadrado $\;ABCD,\;$ dos quais $\;B\;$ e $\;C\;$ vamos manter fixos (não afectados pelas operações de dobragem do quadrado de papel.
  2. Não é possível levar $\;A\;$ até $\;BC\;$fixando um ponto qualquer de $\;AB\;$ para extremo da linha de dobra. Se tomar o ponto $\;M\;$ médio de $\;AB, \;$ levamos o ponto $\;A\;$ a sobrepor-se a $\;B.\;$ Só os pontos de $\;MB\;$ podem ser extremidades de linhas de dobra nas condições do enunciado. Mostram-se os pontos $\;M: \; AM=MB\;$ e $\;P \in MB\;$ que pode ser deslocado.
  3. 3 outubro 2017, Criado com GeoGebra

  4. Para cada $\;P\;$ só há um ponto $\;A’\;$ de $\;BC\;$ tal que $\;AP=PA’.\;$ Fixados $\;P\;$ e $\;A’\;$ a dobra é única. Ao levar $\;A\;$ a sobrepor-se a $\;A’,\;\; AP\;$ irá para a posição de $\;PA’,\;\; AD\;$ para a posição de $\;A’D’\;$ um segmento da reta perpendicular a $\;PA’\;$ e igual em comprimento a $\;AD.\;$ O extremo $\;E\;$ da linha de dobra no lado $\;CD\;$ oposto a $\;AB\;$ estará sobre a perpendicular tirada por $\;D’\;$ a $\;A’D’\;$ e será tal que $\;DE=ED’\;$ e $\;D\hat{E}D’=A\hat{P}A’.\;$
    Notemos que, quando existem, são iguais os trapézios retângulos $\;APED\;$ e $\;PA’D’E\;$ e semelhantes os triângulos retângulos $\;PBA’, \;\; A’CF,\; EFD’.\;$
  5. Mostra-se nesta etapa o incírculo de $\;[A'CF] \;$ de centro $\;I\;$ e inraio $\;r=IJ$
  6. Nesta etapa, acrescentam-se os pontos $\;O\;$ e $\;X\;$ tais que $\;OX =PB\;$ e relativamente a estes os pontos
    • $\;S=\left(OX, \pi. r^2 \right)\;$ que nos mostra a variação da área do incírculo de $\;[A'CF]\;$ com variação da posição de $\;P\;$ em $\;MB\;$ dada por $\;OX\;$
    • $\;CA'=\left(OX,\; \overline{A'C} \right)\;$ que nos mostra a variação do comprimento do cateto $\; \overline{A'C}\;$com variação da posição de $\;P\;$ em $\;MB\;$ dada por $\;OX\;$ que decresce à medida que $\;P\;$ se aproxima de $\;B;\;$
    • $\;CF=\left(OX,\; \overline{CF} \right)\;$ que nos mostra a variação do comprimento do cateto $\; \overline{CF}\;$ (com variação da posição de $\;P\;$ em $\;MB\;$ dada por $\;OX\;$) que cresce à medida que $\;P\;$ se aproxima de $\;B;\;$
    Deslocando $\;P\;$ em $\;MB,\;$ poderá conjecturar que $\;S\;$ atinge a sua posição mais elevada (área máxima) quando os catetos de $\;A'CF\;$ têm comprimento igual.


A figura abaixo esclarece que quando a área - ordenada do ponto $\; T\;$ - do triângulo $\;A’CF\;$ cresce {decresce}, a área - ordenada do ponto $\;Y\;$ - do seu incírculo cresce (decresce) e que, para qualquer que seja o valor de $\;x=PB=OX\;$ abcissa comum de $\;T\;$ e $\;Y, \;$ as áreas dadas como ordenadas são tais que $\;y(Y) < y(T).\;$ Ou seja, podemos concluir que a maior área do incírculo e a maior área do triângulo são atingidos numa mesma posição de $\;P.\;$

1 novembro 2017, Criado com GeoGebra

Usando as seguintes designações $\;AB=a\;$ (constante), $\;BP=x\;$ (variável com posição de $\;P\;$ em $\;MB,\;$) $\;BA’ = p\;$ e $\; CF=a’\;$ temos
$\;A’P=a-x, \;A’C=a-p\;$ e por $\;BA’P\;$ ser retângulo em $\;B\,$, temos
$$\;x^2+p^2=(a-x)^2 \Leftrightarrow x^2+p^2 = a^2+x^2-2ax \Leftrightarrow x= \displaystyle \frac{a^2-p^2}{2a} *\;$$ e como $\Delta A’CF \sim \Delta BA’P$, sabemos que $$\frac{a’}{p}=\frac{a-p}{x} \Leftrightarrow a’=\frac{2ad(a-p)}{a^2-p^2} \Leftrightarrow a’= \frac{2ap}{a+p}$$ e a área $\;y(T)\;$ de $\;\Delta A’CF\;$ pode ser expressa $$y = \frac{a’(a-p)}{2}\Leftrightarrow y = \frac{2ap(a-p)}{2(a+p)}\Leftrightarrow y=\frac{ap(a-p)}{a+p}$$ e $$y’_p= \frac{(a(a-p)-ap)\times(a+p) - ap(a-p)}{(a+p)^2}= \frac{(a^2-2ap)(a+p)-a^2p+ap^2}{(a+p)^2}=$$ $$y’_p=\frac{a^3+a^2p-2a^2p-2ap^2-a^2p+ap^2}{(a+p)^2} = \frac{a^3-2a^2p -ap^2}{(a+p)^2}$$ Assim, para $\;a\neq 0,\;$ $$y’_p (p)=0 \Leftrightarrow a(p^2 + 2ap -a^2)=0 \Leftrightarrow p=\frac{-2a ± \sqrt{8a^2}}{2}= 0 \Leftrightarrow p= -a + \sqrt{2} a \vee p=-a - \sqrt{2} a$$ Para o problema em causa, só o primeiro valor apresentado $\;p= (\sqrt{2} -1)a\;$ serve. E, portanto, para o valor $$*x=\frac{a^2- (\sqrt{2} -1)^2a^2}{2a}=\frac{a^2(1-(2-2\sqrt{2}+1)}{2a}= \frac{a^2(\sqrt{2}-1)}{a}= (\sqrt{2}-1)a$$ de $PB$ as áreas do triângulo $\;[A’CF]\;$ e do seu incírculo tomam o seu valor máximo.
Podemos agora confirmar a conjectura feita na entrada anterior Quando $\;p=BA’=(\sqrt{2}-1)a, \;$ será verdade que acontece $\;a-p= A’C=CF=a’ ?\;$ Ou, para $ \;p=(\sqrt{2}-1)a\;$ será $\;CF=a’= \frac{2ap}{a+p} = a-p =A’C’ ?$
Ora, substituindo $\;p\;$ por $(\sqrt{2}-1)a\;$ nas diversas expressões e simplificando temos
$\;2ap = 2a(\sqrt{2}-1)a, \;\; \; a+p=a+(\sqrt{2}-1)a=\sqrt{2}a; \;\;\; a-p= a- \sqrt{2}a +a=(2-\sqrt{2})a\;$ de onde se retira finalmente $$\frac{2(\sqrt{2}-1)a^2}{\sqrt{2}a}=\frac{2a(\sqrt{2}-1) \times \sqrt{2}}{2}=(2-\sqrt{2})a $$ como esperávamos. Fica confirmada a conjectura adiantada inicialmente.


  1. Sangaku Optimization Problems:
    (All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
    Japanese Paper Folding Problem
    Problem Statement: When as square piece of paper of fixed side length is folded as shown in the figure, a circle is formed in the upper-left-hand corner which is tangent at three points to the paper. First show the red segment and the red radius are equivalent for all folds. Then determine where the paper should be folded in order to maximize the area of the circle.
    Adapted from: Japanese Temple Geometry Problems. Fukagawa, H. & Pedoe, D. The Charles Babbage Research Center, Winnipeg, 1989.
  2. A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.
  3. http://geometrias.eu/deposito/ORirABCO2a.html
    http://geometrias.blogspot.pt/2014/10/triangulos-retangulos-altura-e-inraios.html
  4. Robert Geretschläger. Folding Questions - A paper about Problems about Paper. WFNMC-6, Riga, Latvia: 2010
  5. Hiroshi Okumura. A Folded Square Sangaku Problem
  6. Hiroshi Okumura. A Note on HAGA's Theorems in Paper Folding. in Forum Geometricorum.Volume 14 (2014) 241-242
  7. Hidetoshi Fukagawa. Japanese Temple Geometry Problems. 1989.

13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.