Problema: Num dado triângulo, traçar uma linha paralela à base de tal forma que se se traçarem a partir dos seus extremos linhas paralelas aos lados até cortarem a base, somadas meçam o dobro que a linha inscrita. (31/12/1881)
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008
Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores \;2\;de \;n\; no cursor \;\fbox{n=1,..., 4}.\;
- São dados \;A, \;B, \;C\;. Resolver o problema consiste em determinar, por construção, pontos \;C'\; sobre \;AB\; e \;B'\; sobre \;AC\;, de tal forma que \;B'C' \parallel BC \wedge C'E+B'D = 2\times B'C',\; sendo \;D, \;E\; pontos de \;BC\; e \;B'D \parallel AB\; e \;C'E \parallel AC. \;
-
Supor que o problema está resolvido é supor que \;B'C'\; está situada de tal forma que \;B'D\; e \;C'E\;, paralelas aos lados, somados dêem \;2B'C'.
De acordo com a proposição 34 do Livro I dos Elementos de Euclides
\;B'D =C'B\; e \;C'E=B'C\; e portanto \;B'C + C'B = 2B'C'.
E há um ponto \;L\; de \;B'C'\; que o divide em duas partes sendo uma igual a metade de \;B'C\; e outra igual a metade de \;C'B.\; Se deteminarmos este ponto \;L,\; por ele passa uma única paralela a \;BC... - Para determinar o ponto \;L\; sobre \; B'C'\; paralela a \;BC,\; de tal modo que \;2LC'=C'B\; e \;2LB'=B'C \; (i.e. \;2(LC'+LB')= 2C'B' =C'B+B'C = B'D+C'E\; ), podemos usar um ponto \;F\; qualquer de \;AB\; (ou de \;AC\;) e por ele tirar uma paralela a \;BC.\;
- Depois é só tomar \;G\; sobre essa paralela de tal modo que \;2FG =FB\; e \;L\; estará sobre a reta \;BG.\; Claro que, fazendo o mesmo para o lado \;AC,\; \;L\; estará sobre \;CK,\; estando \;K\; sobre uma paralela a \;BC\; tirada por um ponto \;H\; de \;AC\; sendo \;2KH=HC.\; \;L\; é único \;CK.BG \; e \;B'C'\; é a única paralela a \;BC \; tirada por \; L
- São semelhantes os triângulos \;[FBG]\; e \;[C'BL]\; e os lados opostos ao ângulo \;\hat{B}\; comum são homólogos e \;BC' = 2C'L,\; já que por construção \;FB=2FG.\; Do mesmo modo, se mostra que \;2LB'=B'C\; □
A construção (sintética, a seguir) está ilustrada para os valores \;3,\; 4\; de \;n\; no cursor \;\fbox{n=1,..., 4}.\;
© geometrias, 25 de Junho de 2014, Criado com GeoGebra
Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta \;B'C'\; .
Sem comentários:
Enviar um comentário