Mostrar mensagens com a etiqueta inversão. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta inversão. Mostrar todas as mensagens

14.3.22

Seja espelho a dourada circunferência: qual a posição da imagem do ponto A a esse espelho?

Considere a inversão associada à circunferência dourada e determine o transformado de A por essa inversão.

15.4.18

Circunferência tangente a três outras circunferências


Um exemplo de síntese num problema de construção cujos passos são sugeridos pela análise do problema


Problema: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respetivos raios $\;(A,a), \;(B,b), \;(C, c)\;$

15 abril 2018, Criado com GeoGebra


Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução de problemas de
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Nota (45 de F.G-M.).Há problemas de construção geométrica para os quais basta o recurso a um só teorema para acedermos à solução. Mas para a maioria dos problemas, a resposta não depende de um só resultado já conhecido. E, por isso, para resolver um problema é necessário recorrer a uma sucessão de problemas mais simples. Já percorremos longos caminhos construtivos em que cada passo dado não é mais do que um apoio para o passo seguinte até termos conseguido a solução do problema originalmente proposto. Apresentamos a seguir um problema de construção que analisamos para descobrir a sequência de problemas que é necessário resolver por uma ordem que é a inversa da que vamos seguir quando apresentamos em síntese.


Problema 46: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respectivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
46. Décrire une circonférence tangente à trois circonférences données
$\;A, B, C\;$

Consideremos o problema resolvido, isto é, suponhamos que temos determinada uma circunferência $\;(D, d)\;$ que é tangente a cada uma das circunferências $\;(A, a),\; (B, b), \; (C, c)\;$ dadas pelos respectivos (centro, raio). Consideremos, por exemplo, que $\;(A, a)\;$ é a de menor raio das circunferências dadas: $\;a < b, \;a < c \;$

A distância entre centros de circunferências tangentes é igual à soma dos seus raios e, assim, $\;DA= d+a,\; DB=d+b,\; DC= d+c.\;$ Uma circunferência de centro em $\;D\;$ e raio $\;DA=d+a\;$ é tangente à circunferência de centro em $\;B\;$ e raio $\;DB-DA=d+b-(d+a)=b-a\;$ e também à circunferência de centro em $\;C\;$ e raio $\;DC-DA=d+c-(d+a)=c-a.\;$ Se existir, a circunferência $\;(D, AD)\:$ é tangente a $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e passa por $\;A.$
Consideremos a semelhança (homotetia) entre as circunferências $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e tiremos pelo centro $\;E\;$ da homotetia uma tangente $\;EFG\;$ comum às duas, sendo pontos de tangência $ \;F\;$ e $\;G,\;$ respetivamente de $ \;(B, b-a)\;$ e $\;(C, c-a).\;$

Por isso, podemos dizer que precisamos de resolver o seguinte
Problema 47: Construir uma circunferência que passa por um ponto $\;A\;$ e é tangente a duas circunferências dadas $\;(B,b-a),\; (C, c-a)\;$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
47. Décrire une circonférence qui passe par un point $\;A\;$ et qui soit tangente à deux circonférences données
$\;(B, F)\;$ et $\;(C, G)\;$

A reta $\;EA\;$ intersectará a circunferência $\;(D,d)\;$ num ponto $\;H\;$ tal que $\;EA.EH=EF.EG,\;$ potência de $\;E\;$ relativamente à circunferência $\;(FGH)\;$ ou seja um ponto da circunferência $\;(D,d)\;$ fica determinado na intersecção de $\;EF\;$ com $\;(FGA).\;$
E o nosso problema depende da resolução do

Problema 48: Construir uma circunferência que passa por dois pontos $\;A,\; H\;$ dados e é tangente a uma das circunferências $\;(B, b-a)\;$ ou $\;(C, c-a)\;$ que se resume a construir uma circunferência que passe por três pontos dados $\;F,\;G, \;A.$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
48. Décrire une circonférence qui passe par deux points A, H donnés et qui soit tangente à une circonférence donnée

Ce troisième problème se ramène à ce quatrième : faire passer une circonférence par trois points donnés.

Nota (49a F.G.-M.) As indicações dadas são analíticas, desmontam o problema em vários, mas como cada resultado não é recíproco de nenhum dos outros, é preciso estudar cada um deles com cuidado, para não omitir alguma das soluções. Atente-se:
  1. Há uma só circunferência a passar por três pontos não colineares.
  2. Há duas circunferência a passar por dois pontos e tangente a uma outra circunferência.
  3. Há quatro circunferências a passar por um ponto e tangente a duas outras circunferências
  4. Há oito circunferências tangentes a três outras circunferências.
O método sintético expõe em primeiro lugar o problema mais simples que é o quarto e logo depois o terceiro, o segundo, e finalmente o problema geral, caminho inverso do seguido no método da exposição analítica percorrido, provavelmente seguido por François Viète e, como exemplo de simplificações sucessivas, apresentado por Georges RITT no seu Problèmes de Géometrie.

7.1.16

Outro problema resolvido usando inversão


Construir uma circunferência que passe por um ponto $\;A\;$ dado e corte duas circunferências - $\;c_1, \;c_2\;$ - dadas segundo os ângulos $\; \alpha , \; \beta \;$ respetivamente.

O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Se duas circunferências se cortam, dizemos que se cortam segundo um ângulo $\;\alpha \;$ quando as tangentes às duas num ponto de interseção fazem um ângulo de amplitude $\; \;\alpha .\;$ Neste caso, temos de encontrar uma circunferência que corte $\;c_1\;$ segundo um ângulo $\; \alpha\;$ (verde) e $\;c_2\;$ segundo o ângulo $\;\beta \;$ (castanho).
Para isso bastará inverter as circunferências dadas relativamente a uma circunferência de inversão e depois encontrar uma reta que corte as inversas segundo aqueles ângulos. Como a inversão conserva os ângulos se invertermos essa reta obteríamos uma circunferência a cortar as dadas segundo os ângulos dados. Esta circunferência inversa da reta deve passar pelo ponto $\;A\;$ dado e, para isso acontecer, bastará que a circunferência de inversão tenha centro em $\;A.\;$
Os procedimentos necessários já foram dissecados antes, por exemplo, na antepenúltima entrada publicada a 20 de dezembro do passado ano em que se apresentava a resolução do problemma " Construir uma circunferência que passe por dois pontos $\;A,\;B\;$ dados e corte uma reta dada segundo um dado ângulo $\; \alpha. \;$

© 5 janeiro 2016, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ no seletor na direita alta da figura, acompanha passo a passo a resolução do problema. Também pode fazer variar a amplitude do ângulo dado deslocando o ponto visível a verde, como pode fazer variar $\; A, \; O_1, \;O_2, ....\;$ com consequências que vão até poder ver em que condições há dua\ ou nenhuma solução para o problema.… Depois de qualquer alteração, pode usar o botão (direita altíssima) para reiniciar. <

Na figura ----$\;\fbox{n=0}\;$---- estão patentes os dados do problema.
Em ---- $\;\fbox{n=1}\;$---- acrescenta-se uma circunferência $\;i\;$ de centro $\;A\;$ (raio qualquer) que vai servir de circunferência de inversão.
$\;\fbox{n=2}\;$---- A inversão relativa à circunferência $\;i\;$ ou $\;(A)\;$ transforma a circunferência $\;c_1 \;\;\;\mbox{ou}\;\;\; (O_1) \;$ numa circunferência $\;c'_1\;$ de centro $\;O'_1$ e $\;(O_2)\;$ em $\;(O'_2)\;$ (tracejadas)
$\;\fbox{n=3}\;$---- Determinamos as circunferências (pontilhadas) concêntricas com $\;c'1 , \;c'_2\;$ para cada uma das quais qualquer das suas retas tangentes fazem ângulos
---$\; \alpha \;$ com $\;c'_1\;$, inversa de $\;c_1\;$
---$\; \beta \;$ com $\;c'_2\;$
$\;\fbox{n=4}.:\;$ Tomamos uma tangente (laranjada) comum a essas duas circunferências que obviamente cortará $\;(c'_1)\;$ segundo um ângulo $\; \alpha\;$ e $\;c'_2\;$ segundo um ângulo $\;\beta\;$
$\;\fbox{n=5} :\;$ ---- Por isso e porque a circunferência da inversão tem centro $\;A\;$, invertendo a reta alaranjada relativamente a $\;(i),\;$ obtemos uma circunferência que é solução do problema, ----$\;\fbox{n=6,7}\;$---- aqui realçada

Claro que no caso dos concretos dados originais e da nossa figura há mais três soluções, já que os nossos dois círcul(inh)os (a pontilhado) admitem quatro tangentes mostradas para $\;\fbox{n=8, 9, 10} \;$
Pode fazer variações claro....


* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
201. Construire un cercle passant par un point donné $\;A\;$ et coupant deux cercles donnés $\;(C),\;(C')\;$ sous des angles donnés $\;\alpha,\; \alpha '.$

20.12.15

Problema que precisa da invariância de ângulos por inversão para ser resolvido.


Construir uma circunferência que passe por dois pontos $\;A, \; B\;$ dados e corte uma reta - $\;r\;$ - dada segundo um dado ângulo $\; \alpha .$

O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Há uma infinidade de circunferências que passsam por $\;A\;$ e $\;B\;$. Precisamos de determinar alguma dessas que cortem $\;r\;$ segundo o ângulo $\;\alpha \;$.

© 20 dezembro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ no seletor na direita alta da figura, acompanha passo a passo a resolução do problema. Também pode fazer variar a amplitude do ângulo dado deslocando o ponto visível a verde, como pode fazer variar $\;r, \;A, \;B\;$ com consequências que vão até poder ver em que condições há uma ou nenhuma solução para o problema.… Depois de qualquer alteração, pode usar o botão (direita altíssima) para reiniciar.

$\;\fbox{n=1}\;\;\;\;$ A inversão relativa à circunferência de centro $\;A\;$ e raio $\;AB\;$
$\;\fbox{n=2}\;\;\;\;$ transforma a reta $\;r\;$ numa circunferência $\;r'\;$
$\;\fbox{n=3}\;\;\;\;$ que passa por $\;A,\;$ centro da inversão aplicada a $\;r\;$.
Como a inversão preserva os ângulos, o problema reduz-se a determinar uma recta que passe por $\;B\;$ e faça um ângulo $\;\alpha\;$ com a circunferência $\,r'\;$.
As retas que fazem ângulos $\;\alpha\;$ determinam-se facilmente: Toma-se um ponto $\;I\;$ genérico de $\;r'\;$ e a sua tangente nesse ponto
$\;\fbox{n=4}\;\;\;\;;$ A reta que faz um ângulo $\; \alpha \;$ com cada tangente é uma das retas que procuramos e que no seu conjunto determinam (envolvem) uma circunferência concêntrica com $\;r'\;$
$\;\fbox{n=5}\;\;\;\;$ lugar geométrico dos pontos médios das cordas determinadas pelas retas que que fazem ângulos $\; \alpha\;$ com as tangentes em qualquer dos seus extremos.
De entre todas essas retas, interessam-nos aquelas que passam por $\;B\;$ que são duas delas: as tangentes $\;t_1, \; t_2\;$ à circunferência de centro $\;O \;$ e raio $\;OM\;$ tiradas por $\;B\;$
$\;\fbox{n=6}\;\;\;\;$ Se aplicarmos a estas retas $\;t_1, \; t_2\;$ a inversão de centro $\;A\;$ e raio $\;AB\;$ as suas transformadas são, respetivamente, as circunferências $ \;c_1, \; c_2\;$ que passam por $\;A\;$, centro da inversão, e também por $\;B\;$ por este ser um ponto da circunferência de inversão (invariante por essa inversão)
$\;\fbox{n=7}\;\;\;\;\;$ A figura final
$\;\fbox{n=8}\;\;\;\;$ só serve para mostrar os dados e as soluções do problema sem mais.

* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
200. Construire un cercle passant par deux points donnés et coupant une droite donnée sous un angle donné $\;\alpha$.

29.8.14

Posições de 3 circunferências tangentes entre si e tangentes a uma reta dada


Problema: Dada uma reta $\;a\;$ construir três circunferências tangentes à reta dada e tangentes duas a duas de que se conhecem os raios $\;r_1, \;r_2\;$ de duas delas.


Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. $\fbox{n=1}:\;$ Apresenta-se a reta $\;a\;$ e segmentos $\;r_1, \;r_2\;$ de comprimentos iguais aos raios de duas circunferências $\;(O_1, \;r_1), \;(O_2, \;r_2).\;$
  2. $\fbox{n=2}:\;$ Tomamos a circunferência inscrita em $\;(O_1, \;r_1)\;$ para a qual $\;T_1\;$ é um ponto de $\;a :\; O_1T_1 \;\perp\; a \;\wedge\; O_1T_1 =r_1.\;$
  3. $\fbox{n=3}:\;$ Para construir $\;(O_2, \;r_2)\;$ nas condições requeridas temos de determinar os pontos $\;O_2, \; T_2\;$ tais que $\;T_2 \in a, T_2O_2\; \perp \;a, \; T_2O_2=r_2, \;O_1O_2=r_1+r_2\;$
    Analisando o problema resolvido, a posição de $\;T_2\;$ sobre $\;a\;$ relativamente a $\;T_1\;$ é dada por $\;T_1T_2 = 2 \sqrt{r_1r_2}\;$
    Nota: $\;\sqrt{r_1r_2}\;$ é determinado como altura de triângulo retângulo inscrito numa semicircunferência de diâmetro $\;r_1+r_2\;$ por ela dividido nos comprimentos - parcelas).
  4. $\fbox{n=4}:\;$ Esse resultado está bem ilustrado na figura. Recorrendo a um triângulo $\;O_1PO_2\;$ retângulo em $\;P\;$, para o qual um dos catetos é $\;O_1P = |r_1-r_2|\;$ e a hipotenusa é $\;O_1O_2 = r_1+r_2\;$, o outro cateto é $\;O_2P = T_1T_2.\;$
    E assim, pelo Teorema de Pitágoras aplicado a $\;O_1PO_2\;$, $\;T_1T_2 ^2 = (r_1+r_2)^2 - (r_1-r_2)^2= 4r_1r_2\;$, e finalmente $$\;T_1T_2 =2\times \displaystyle \sqrt{r_1r_2}.\;$$ Fica assim determinada a posição da circunferência $\;(O_2, \;r_2)\;$ tangente a $\;a\;$ e a $\;(O_1, \;r_1).\;$

  5. © geometrias, 29 de Agosto de 2014, Criado com GeoGebra


  6. $\fbox{n=5}:\;\;$ Para determinar a posição do ponto de tangência a $\;a\;$ - $\;T_3\;$ e raio $\;r_3\;$ de uma circunferência $\;( O_3, \;r_3),\;$, usamos os resultados anteriores agora aplicados aos pares de circunferências $\;\left(( O_1, \;r_1), \;( O_3, \;r_3)\right)\;$ e $\;\left(( O_2, \;r_2), \;( O_3, \;r_3)\right)\;$:
    $\;T_1T_3 = 2\sqrt{r_1r_3}, \;T_2T_3 = 2\sqrt{r_2r_3}.\;$
    Como terá de ser $\;T_1T_2 = T_1T_3 + T_3T_2,\;$ $\;2\sqrt{r_1r_2}=2\sqrt{r_1r_3} + 2\sqrt{r_2r_3}$, equivalente a $\;\sqrt{r_1r_2}=\sqrt{r_3}(\sqrt{r_1} + \sqrt{r_2})$, por sua vez equivalente a $$\frac{1}{\sqrt{r_3}} =\frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$ que nos permitem a determinação de segmento de comprimento $\;\sqrt{r_3} \;$.
    Na nossa construção, usamos a construção de $\;\sqrt{r}\;$ como altura do triângulo retângulo de hipotenusa $\;r+1\;$ por ela dividida nestas suas parcelas, e recorremos à inversão (já muitas vezes aplicada na resolução de problemas de construção neste "lugar geométrico")
    Nota: O que fazemos para obter $\;r_3\;$ após termos obtido $\;\sqrt{r_3}\;$? Tomamos um segmento de comprimento 1 sobre uma reta à distância $\;\sqrt{r_3}\;$. Tiramos por um dos extremos do segmento unitário uma perpendicular a este e marcamos a interseção com a paralela. Tomamos para cateto de um triângulo retângulo o segmento que une esta interseção com o outro extremo do segmento unitário. A reta perpendicular a este cateto vai intersetar a reta do segmento unitário num ponto à distância $\;r_3\;$ do extremo da altura do triângulo de hipotenusa $\;1+\sqrt{r_3}\;$
  7. $\fbox{n=6}:\;\;$ O centro $\;O_3\;$pode ser obtido como interseção das circunferências $\;(O_1, \;r_1+r_3)\;$ e$\;(O_2, \;r_2+r_3)\;$. E a terceira circunferência da solução do problema inicial está bem determinado (com régua e compasso)

26.5.14

Resolver problemas de construção usando a inversão


Problema:     Determinar dois pontos cada um sobre uma de duas retas dadas de tal modo que o produto das suas distâncias a um ponto dado seja uma dada constante.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 26 de Maio de 2014, Criado com GeoGebra



  1. São dadas: duas retas $\;r_1, \;r_2\;$, um ponto $\;O\;$ e um número $\;k\;$.
  2. Procuramos um ponto $\;P_1\;$ de $\;r_1\;$ e um outro $\;P_2\;$ de $\;r_2\;$, tais que $\;OP_1 \times OP_2 = k^2$, o mesmo é dizer que $\;P_1\;$ e $\;P_2\;$ são correspondentes pelas inversão de centro $\;O\;$ e potência $\;k^2\;$.
    Tomamos, por isso, para circunferência de inversão $\;(O, \;k)\;$ tracejada a vermelho.
  3. Pela inversão $\;{\cal{I}}(O, \;k^2)$, a reta $\;r_1\;$ é transformada numa circunferência (tracejada a azul) que passa por $\;O\;$ e pelos pontos de interseção da circunferência de inversão com a reta $\;r_1$
    Tomemos para ponto $\;P_2\;$ o ponto de interseção da circunferência $\;r'_1 \;$ com a reta $\;r_2\;$. Como $\;P_2\;$ de $\;r_2\;$ é um ponto de $\;r'_1\;$, terá um original $\;P_1\; $ em $\;r_1\;$, interseção desta reta com $\;OP_2\;$:
    Estes pontos $\;P_1, \; P_2\;$ são solução do problema: $$OP_1 \times OP_2 =k^2$$
Pode deslocar $\;O$, $\;r_1, \;r_2\;$ para além de $\;k\;$.
Não vamos apresentar outros exemplos de problemas de construção usando a inversão por termos apresentado anteriormente um conjunto considerável de aplicações da inversão.

10.8.07

a inversa da concêntrica verde

Considere a circunferência c, preta na figura, e a inversão a ela associada. Determine a transformada por essa inversão da cirucunferência verde, v.

Inverter é ver ao espelho. O quê,?

Tomámos uma circunferência de centro em O e raio r. Os inversos dos pontos de uma recta exterior a essa circunferência (inversora, assim lhe chamamos para simplificar) estão todos sobre uma circunferência que passa pelo centro da circunferência inversora. Falávamos de inverso mesmo no sentido do que neutralizaria um número pela multiplicação: a cada P da recta r, associamos o número p = |OP|/r e ao transformado P' de P fica associado um número p' =|OP'|/r=r/|OP|=p-1. Claro que o ponto O a que corresponde |OO|=0 não é inverso de qualquer ponto (ou é inverso do ponto impróprio da recta - no infinito) e não tem inverso na inversão associada à circunferência de centro O (ou é inverso de qualquer ponto impróprio de qualquer recta).
[A inversa de uma recta é uma circunferência com menos um ponto (ou com um buraco). A imagem por inversão associada a uma cirunferência de uma recta acabada (incluindo os pontos impróprios onde ela começa e acaba, no infinito) é uma circunferência.]
Interessante é agora procurar inverter figuras geométricas ou ver as suas imagens num espelho circular. Qual é a imagem de uma recta secante à circunferência inversora? Qual é a imagem de uma cirunferência que não seja concêntrica com a crcunferência inversora de centro O e não passe por O? Qual é a imagem da própria circunferência inversora? Qual é a imagem de uma circunferência concêntrica com outra tomando para espelho uma delas? Qual é a imagem de um segmento de recta? E de um triângulo?
Tantas perguntas? Algumas delas. Cada pessoa pode fazer outras tantas e ver como as respostas fazem quadros surpreendentes e belos. Com que cores queremos pintar o nosso mundo do outro lado do espelho?

9.8.07

Determinar o inverso de A.

Considere a inversão associada à circunferência e determine o transformado de A por essa inversão.

4.8.07

O mesmo, de outro modo

Penso que pode ser interessante apresentar a inversão "mais ingénua", com a animação feita (determinação dos inversos P' dos pontos P da recta r, escolhida a unidade; |OR|=1) com os instrumentos de determinação geométrica - semelhanças de triângulos - abordados no 8º ano. Aqui fica.





Nota: Este tipo de ligação entre operações e transformações servem ainda para ilustrar a noção de lugar geométrico.

Inversão de uma recta


Parece interessante, havendo tempo para tal no 9º ano, que se utilize a oportunidade da determinação da tangente por um ponto exterior a uma circunferência para uma referência à inversão, fazendo a ligação com as propriedades das operações com números.

O que acontece se a recta cortar a circunferência associada à inversâo?

3.8.07

Inversão

Com os alunos do 8º ano, experimentei a compreensão de alguns procedimentos para efectuar, com régua e compasso, construções geométricas sobre segmentos correspondentes a operações sobre números. Escolhido um segmento para unidade, e dados segmentos de comprimentos a e b, quaisquer, não aparecia como fácil a determinação de um segmento correspondente ao comprimento ab e menos ainda os correspondentes aos comprimentos a/b, 1/a, a2>, etc. Na altura, tal era pedido depois de termos cuidado das semelhanças de triângulos e os raciocínios usavam só a proporcionalidade entre segmentos determinados por feixes de rectas concorrentes cortadas por paralelas. Parece que não há qualquer problema em determinar 2a em linha nem em compreender o que significa ab, a2 ou a(b+c) em termos de áreas, mas já tudo se complica quando se pede um segmento igual a 2a/3, ab, etc. Parece que não é assumida a sistemática comparação entre segmentos quando se fala em medida de um comprimento relativamente a outro.
No 9º ano, vamos poder voltar às operações sobre segmentos, agora com recurso sistemático a circunferência e tangentes tiradas por um ponto, sem acrescentar muito ao que se sabe sobre triângulos. Será que a compreensão aumenta? Estas dificuldades devem estar todas resolvidas quando entramos na geometria analítica como tal. Por exemplo, sobre a construção que se apresenta a seguir, está desenhada uma circunferência de raio 3 e as tangentes tiradas por um ponto P (que pode deslocar), um ponto P' (da polar de P relativamente à circunferência e colinear com O e P), define o segmento [OP'] cujo comprimento é o inverso do comprimento de [OP] se tomarmos como unidade o raio da circunferência.

[A.A.F.]

A transformação associada à circunferência dada que a cada P faz corresponder P' (e reciprocamente) nas condições da construção dada, toma naturalmente o nome de inversão relativamente à circunferência. Este é outro exemplo, para aprofundar e melhorar o conceito de medida, permitindo realizar exercícios geométricos muito atractivos geometricamente. Valerá a pena?
No mundo do ATRACTOR há uma máquina muito potente que efectua inversões. Pode usar livremente.