14.3.22
Seja espelho a dourada circunferência: qual a posição da imagem do ponto A a esse espelho?
15.4.18
Circunferência tangente a três outras circunferências
Um exemplo de síntese num problema de construção cujos passos são sugeridos pela análise do problema
Problema: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respetivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
15 abril 2018, Criado com GeoGebra
Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução de problemas de
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
Nota (45 de F.G-M.).Há problemas de construção geométrica para os quais basta o recurso a um só teorema para acedermos à solução. Mas para a maioria dos problemas, a resposta não depende de um só resultado já conhecido. E, por isso, para resolver um problema é necessário recorrer a uma sucessão de problemas mais simples. Já percorremos longos caminhos construtivos em que cada passo dado não é mais do que um apoio para o passo seguinte até termos conseguido a solução do problema originalmente proposto. Apresentamos a seguir um problema de construção que analisamos para descobrir a sequência de problemas que é necessário resolver por uma ordem que é a inversa da que vamos seguir quando apresentamos em síntese.
Problema 46: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respectivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
46. Décrire une circonférence tangente à trois circonférences données $\;A, B, C\;$
Consideremos o problema resolvido, isto é, suponhamos que temos determinada uma circunferência $\;(D, d)\;$ que é tangente a cada uma das circunferências $\;(A, a),\; (B, b), \; (C, c)\;$ dadas pelos respectivos (centro, raio). Consideremos, por exemplo, que $\;(A, a)\;$ é a de menor raio das circunferências dadas: $\;a < b, \;a < c \;$
A distância entre centros de circunferências tangentes é igual à soma dos seus raios e, assim, $\;DA= d+a,\; DB=d+b,\; DC= d+c.\;$
Uma circunferência de centro em $\;D\;$ e raio $\;DA=d+a\;$ é tangente à circunferência de centro em $\;B\;$ e raio $\;DB-DA=d+b-(d+a)=b-a\;$ e também à circunferência de centro em $\;C\;$ e raio $\;DC-DA=d+c-(d+a)=c-a.\;$
Se existir, a circunferência $\;(D, AD)\:$ é tangente a $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e passa por $\;A.$
Consideremos a semelhança (homotetia) entre as circunferências $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e tiremos pelo centro $\;E\;$ da homotetia uma tangente $\;EFG\;$ comum às duas, sendo pontos de tangência $
\;F\;$ e $\;G,\;$ respetivamente de $
\;(B, b-a)\;$ e $\;(C, c-a).\;$
Por isso, podemos dizer que precisamos de resolver o seguinte
Problema 47: Construir uma circunferência que passa por um ponto $\;A\;$ e é tangente a duas circunferências dadas $\;(B,b-a),\; (C, c-a)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
47. Décrire une circonférence qui passe par un point $\;A\;$ et qui soit tangente à deux circonférences données $\;(B, F)\;$ et $\;(C, G)\;$
A reta $\;EA\;$ intersectará a circunferência $\;(D,d)\;$ num ponto $\;H\;$ tal que $\;EA.EH=EF.EG,\;$ potência de $\;E\;$ relativamente à circunferência $\;(FGH)\;$ ou seja um ponto da circunferência $\;(D,d)\;$ fica determinado na intersecção de $\;EF\;$ com $\;(FGA).\;$
E o nosso problema depende da resolução do
Problema 48: Construir uma circunferência que passa por dois pontos $\;A,\; H\;$ dados e é tangente a uma das circunferências $\;(B, b-a)\;$ ou $\;(C, c-a)\;$ que se resume a construir uma circunferência que passe por três pontos dados $\;F,\;G, \;A.$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
48. Décrire une circonférence qui passe par deux points A, H donnés et qui soit tangente à une circonférence donnée
Ce troisième problème se ramène à ce quatrième : faire passer une circonférence par trois points donnés.
Nota (49a F.G.-M.) As indicações dadas são analíticas, desmontam o problema em vários, mas como cada resultado não é recíproco de nenhum dos outros, é preciso estudar cada um deles com cuidado, para não omitir alguma das soluções. Atente-se:
- Há uma só circunferência a passar por três pontos não colineares.
- Há duas circunferência a passar por dois pontos e tangente a uma outra circunferência.
- Há quatro circunferências a passar por um ponto e tangente a duas outras circunferências
- Há oito circunferências tangentes a três outras circunferências.
7.1.16
Outro problema resolvido usando inversão
Construir uma circunferência que passe por um ponto $\;A\;$ dado e corte duas circunferências - $\;c_1, \;c_2\;$ - dadas segundo os ângulos $\; \alpha , \; \beta \;$ respetivamente.
O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Se duas circunferências se cortam, dizemos que se cortam segundo um ângulo $\;\alpha \;$ quando as tangentes às duas num ponto de interseção fazem um ângulo de amplitude $\; \;\alpha .\;$ Neste caso, temos de encontrar uma circunferência que corte $\;c_1\;$ segundo um ângulo $\; \alpha\;$ (verde) e $\;c_2\;$ segundo o ângulo $\;\beta \;$ (castanho).
Para isso bastará inverter as circunferências dadas relativamente a uma circunferência de inversão e depois encontrar uma reta que corte as inversas segundo aqueles ângulos. Como a inversão conserva os ângulos se invertermos essa reta obteríamos uma circunferência a cortar as dadas segundo os ângulos dados. Esta circunferência inversa da reta deve passar pelo ponto $\;A\;$ dado e, para isso acontecer, bastará que a circunferência de inversão tenha centro em $\;A.\;$
Os procedimentos necessários já foram dissecados antes, por exemplo, na antepenúltima entrada publicada a 20 de dezembro do passado ano em que se apresentava a resolução do problemma " Construir uma circunferência que passe por dois pontos $\;A,\;B\;$ dados e corte uma reta dada segundo um dado ângulo $\; \alpha. \;$
© 5 janeiro 2016, Criado com GeoGebra
Na figura ----$\;\fbox{n=0}\;$---- estão patentes os dados do problema.
Em ---- $\;\fbox{n=1}\;$---- acrescenta-se uma circunferência $\;i\;$ de centro $\;A\;$ (raio qualquer) que vai servir de circunferência de inversão.
$\;\fbox{n=2}\;$---- A inversão relativa à circunferência $\;i\;$ ou $\;(A)\;$ transforma a circunferência $\;c_1 \;\;\;\mbox{ou}\;\;\; (O_1) \;$ numa circunferência $\;c'_1\;$ de centro $\;O'_1$ e $\;(O_2)\;$ em $\;(O'_2)\;$ (tracejadas)
$\;\fbox{n=3}\;$---- Determinamos as circunferências (pontilhadas) concêntricas com $\;c'1 , \;c'_2\;$ para cada uma das quais qualquer das suas retas tangentes fazem ângulos
---$\; \alpha \;$ com $\;c'_1\;$, inversa de $\;c_1\;$
---$\; \beta \;$ com $\;c'_2\;$
$\;\fbox{n=4}.:\;$ Tomamos uma tangente (laranjada) comum a essas duas circunferências que obviamente cortará $\;(c'_1)\;$ segundo um ângulo $\; \alpha\;$ e $\;c'_2\;$ segundo um ângulo $\;\beta\;$
$\;\fbox{n=5} :\;$ ---- Por isso e porque a circunferência da inversão tem centro $\;A\;$, invertendo a reta alaranjada relativamente a $\;(i),\;$ obtemos uma circunferência que é solução do problema, ----$\;\fbox{n=6,7}\;$---- aqui realçada
Claro que no caso dos concretos dados originais e da nossa figura há mais três soluções, já que os nossos dois círcul(inh)os (a pontilhado) admitem quatro tangentes mostradas para $\;\fbox{n=8, 9, 10} \;$
Pode fazer variações claro....
* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
201. Construire un cercle passant par un point donné $\;A\;$ et coupant deux cercles donnés $\;(C),\;(C')\;$ sous des angles donnés $\;\alpha,\; \alpha '.$
20.12.15
Problema que precisa da invariância de ângulos por inversão para ser resolvido.
Construir uma circunferência que passe por dois pontos $\;A, \; B\;$ dados e corte uma reta - $\;r\;$ - dada segundo um dado ângulo $\; \alpha .$
O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Há uma infinidade de circunferências que passsam por $\;A\;$ e $\;B\;$. Precisamos de determinar alguma dessas que cortem $\;r\;$ segundo o ângulo $\;\alpha \;$.
© 20 dezembro 2015, Criado com GeoGebra
$\;\fbox{n=1}\;\;\;\;$ A inversão relativa à circunferência de centro $\;A\;$ e raio $\;AB\;$
$\;\fbox{n=2}\;\;\;\;$ transforma a reta $\;r\;$ numa circunferência $\;r'\;$
$\;\fbox{n=3}\;\;\;\;$ que passa por $\;A,\;$ centro da inversão aplicada a $\;r\;$.
Como a inversão preserva os ângulos, o problema reduz-se a determinar uma recta que passe por $\;B\;$ e faça um ângulo $\;\alpha\;$ com a circunferência $\,r'\;$.
As retas que fazem ângulos $\;\alpha\;$ determinam-se facilmente: Toma-se um ponto $\;I\;$ genérico de $\;r'\;$ e a sua tangente nesse ponto
$\;\fbox{n=4}\;\;\;\;;$ A reta que faz um ângulo $\; \alpha \;$ com cada tangente é uma das retas que procuramos e que no seu conjunto determinam (envolvem) uma circunferência concêntrica com $\;r'\;$
$\;\fbox{n=5}\;\;\;\;$ lugar geométrico dos pontos médios das cordas determinadas pelas retas que que fazem ângulos $\; \alpha\;$ com as tangentes em qualquer dos seus extremos.
De entre todas essas retas, interessam-nos aquelas que passam por $\;B\;$ que são duas delas: as tangentes $\;t_1, \; t_2\;$ à circunferência de centro $\;O \;$ e raio $\;OM\;$ tiradas por $\;B\;$
$\;\fbox{n=6}\;\;\;\;$ Se aplicarmos a estas retas $\;t_1, \; t_2\;$ a inversão de centro $\;A\;$ e raio $\;AB\;$ as suas transformadas são, respetivamente, as circunferências $ \;c_1, \; c_2\;$ que passam por $\;A\;$, centro da inversão, e também por $\;B\;$ por este ser um ponto da circunferência de inversão (invariante por essa inversão)
$\;\fbox{n=7}\;\;\;\;\;$ A figura final
$\;\fbox{n=8}\;\;\;\;$ só serve para mostrar os dados e as soluções do problema sem mais.
* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
200. Construire un cercle passant par deux points donnés et coupant une droite donnée sous un angle donné $\;\alpha$.
29.8.14
Posições de 3 circunferências tangentes entre si e tangentes a uma reta dada
Problema: Dada uma reta $\;a\;$ construir três circunferências tangentes à reta dada e tangentes duas a duas de que se conhecem os raios $\;r_1, \;r_2\;$ de duas delas.
Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
- $\fbox{n=1}:\;$ Apresenta-se a reta $\;a\;$ e segmentos $\;r_1, \;r_2\;$ de comprimentos iguais aos raios de duas circunferências $\;(O_1, \;r_1), \;(O_2, \;r_2).\;$
- $\fbox{n=2}:\;$ Tomamos a circunferência inscrita em $\;(O_1, \;r_1)\;$ para a qual $\;T_1\;$ é um ponto de $\;a :\; O_1T_1 \;\perp\; a \;\wedge\; O_1T_1 =r_1.\;$
- $\fbox{n=3}:\;$ Para construir $\;(O_2, \;r_2)\;$ nas condições requeridas temos de determinar os pontos $\;O_2, \; T_2\;$ tais que $\;T_2 \in a, T_2O_2\; \perp \;a, \; T_2O_2=r_2, \;O_1O_2=r_1+r_2\;$
Analisando o problema resolvido, a posição de $\;T_2\;$ sobre $\;a\;$ relativamente a $\;T_1\;$ é dada por $\;T_1T_2 = 2 \sqrt{r_1r_2}\;$
Nota: $\;\sqrt{r_1r_2}\;$ é determinado como altura de triângulo retângulo inscrito numa semicircunferência de diâmetro $\;r_1+r_2\;$ por ela dividido nos comprimentos - parcelas). - $\fbox{n=4}:\;$ Esse resultado está bem ilustrado na figura.
Recorrendo a um triângulo $\;O_1PO_2\;$ retângulo em $\;P\;$, para o qual um dos catetos é $\;O_1P = |r_1-r_2|\;$ e a hipotenusa é $\;O_1O_2 = r_1+r_2\;$, o outro cateto é $\;O_2P = T_1T_2.\;$
E assim, pelo Teorema de Pitágoras aplicado a $\;O_1PO_2\;$, $\;T_1T_2 ^2 = (r_1+r_2)^2 - (r_1-r_2)^2= 4r_1r_2\;$, e finalmente $$\;T_1T_2 =2\times \displaystyle \sqrt{r_1r_2}.\;$$ Fica assim determinada a posição da circunferência $\;(O_2, \;r_2)\;$ tangente a $\;a\;$ e a $\;(O_1, \;r_1).\;$ - $\fbox{n=5}:\;\;$ Para determinar a posição do ponto de tangência a $\;a\;$ - $\;T_3\;$ e raio $\;r_3\;$ de uma circunferência $\;( O_3, \;r_3),\;$, usamos os resultados anteriores agora aplicados aos pares de circunferências $\;\left(( O_1, \;r_1), \;( O_3, \;r_3)\right)\;$ e $\;\left(( O_2, \;r_2), \;( O_3, \;r_3)\right)\;$:
$\;T_1T_3 = 2\sqrt{r_1r_3}, \;T_2T_3 = 2\sqrt{r_2r_3}.\;$
Como terá de ser $\;T_1T_2 = T_1T_3 + T_3T_2,\;$ $\;2\sqrt{r_1r_2}=2\sqrt{r_1r_3} + 2\sqrt{r_2r_3}$, equivalente a $\;\sqrt{r_1r_2}=\sqrt{r_3}(\sqrt{r_1} + \sqrt{r_2})$, por sua vez equivalente a $$\frac{1}{\sqrt{r_3}} =\frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$ que nos permitem a determinação de segmento de comprimento $\;\sqrt{r_3} \;$.
Na nossa construção, usamos a construção de $\;\sqrt{r}\;$ como altura do triângulo retângulo de hipotenusa $\;r+1\;$ por ela dividida nestas suas parcelas, e recorremos à inversão (já muitas vezes aplicada na resolução de problemas de construção neste "lugar geométrico")
Nota: O que fazemos para obter $\;r_3\;$ após termos obtido $\;\sqrt{r_3}\;$? Tomamos um segmento de comprimento 1 sobre uma reta à distância $\;\sqrt{r_3}\;$. Tiramos por um dos extremos do segmento unitário uma perpendicular a este e marcamos a interseção com a paralela. Tomamos para cateto de um triângulo retângulo o segmento que une esta interseção com o outro extremo do segmento unitário. A reta perpendicular a este cateto vai intersetar a reta do segmento unitário num ponto à distância $\;r_3\;$ do extremo da altura do triângulo de hipotenusa $\;1+\sqrt{r_3}\;$ - $\fbox{n=6}:\;\;$ O centro $\;O_3\;$pode ser obtido como interseção das circunferências $\;(O_1, \;r_1+r_3)\;$ e$\;(O_2, \;r_2+r_3)\;$. E a terceira circunferência da solução do problema inicial está bem determinado (com régua e compasso)
© geometrias, 29 de Agosto de 2014, Criado com GeoGebra
26.5.14
Resolver problemas de construção usando a inversão
A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.
© geometrias, 26 de Maio de 2014, Criado com GeoGebra
- São dadas: duas retas $\;r_1, \;r_2\;$, um ponto $\;O\;$ e um número $\;k\;$.
- Procuramos um ponto $\;P_1\;$ de $\;r_1\;$ e um outro $\;P_2\;$ de $\;r_2\;$, tais que $\;OP_1 \times OP_2 = k^2$, o mesmo é dizer que
$\;P_1\;$ e $\;P_2\;$ são correspondentes pelas inversão de centro $\;O\;$ e potência $\;k^2\;$.
Tomamos, por isso, para circunferência de inversão $\;(O, \;k)\;$ tracejada a vermelho. -
Pela inversão $\;{\cal{I}}(O, \;k^2)$, a reta $\;r_1\;$ é transformada numa circunferência (tracejada a azul) que passa por $\;O\;$ e pelos pontos de interseção da circunferência de inversão com a reta $\;r_1$
Tomemos para ponto $\;P_2\;$ o ponto de interseção da circunferência $\;r'_1 \;$ com a reta $\;r_2\;$. Como $\;P_2\;$ de $\;r_2\;$ é um ponto de $\;r'_1\;$, terá um original $\;P_1\; $ em $\;r_1\;$, interseção desta reta com $\;OP_2\;$:
Estes pontos $\;P_1, \; P_2\;$ são solução do problema: $$OP_1 \times OP_2 =k^2$$
Não vamos apresentar outros exemplos de problemas de construção usando a inversão por termos apresentado anteriormente um conjunto considerável de aplicações da inversão.
10.8.07
a inversa da concêntrica verde
Inverter é ver ao espelho. O quê,?
[A inversa de uma recta é uma circunferência com menos um ponto (ou com um buraco). A imagem por inversão associada a uma cirunferência de uma recta acabada (incluindo os pontos impróprios onde ela começa e acaba, no infinito) é uma circunferência.]
Interessante é agora procurar inverter figuras geométricas ou ver as suas imagens num espelho circular. Qual é a imagem de uma recta secante à circunferência inversora? Qual é a imagem de uma cirunferência que não seja concêntrica com a crcunferência inversora de centro O e não passe por O? Qual é a imagem da própria circunferência inversora? Qual é a imagem de uma circunferência concêntrica com outra tomando para espelho uma delas? Qual é a imagem de um segmento de recta? E de um triângulo?
Tantas perguntas? Algumas delas. Cada pessoa pode fazer outras tantas e ver como as respostas fazem quadros surpreendentes e belos. Com que cores queremos pintar o nosso mundo do outro lado do espelho?
9.8.07
Determinar o inverso de A.
4.8.07
O mesmo, de outro modo
Nota: Este tipo de ligação entre operações e transformações servem ainda para ilustrar a noção de lugar geométrico.
Inversão de uma recta
Parece interessante, havendo tempo para tal no 9º ano, que se utilize a oportunidade da determinação da tangente por um ponto exterior a uma circunferência para uma referência à inversão, fazendo a ligação com as propriedades das operações com números.
O que acontece se a recta cortar a circunferência associada à inversâo?
3.8.07
Inversão
No 9º ano, vamos poder voltar às operações sobre segmentos, agora com recurso sistemático a circunferência e tangentes tiradas por um ponto, sem acrescentar muito ao que se sabe sobre triângulos. Será que a compreensão aumenta? Estas dificuldades devem estar todas resolvidas quando entramos na geometria analítica como tal. Por exemplo, sobre a construção que se apresenta a seguir, está desenhada uma circunferência de raio 3 e as tangentes tiradas por um ponto P (que pode deslocar), um ponto P' (da polar de P relativamente à circunferência e colinear com O e P), define o segmento [OP'] cujo comprimento é o inverso do comprimento de [OP] se tomarmos como unidade o raio da circunferência.
[A.A.F.]
A transformação associada à circunferência dada que a cada P faz corresponder P' (e reciprocamente) nas condições da construção dada, toma naturalmente o nome de inversão relativamente à circunferência. Este é outro exemplo, para aprofundar e melhorar o conceito de medida, permitindo realizar exercícios geométricos muito atractivos geometricamente. Valerá a pena?
No mundo do ATRACTOR há uma máquina muito potente que efectua inversões. Pode usar livremente.