De vez em quando vamos acrescentando problemas de construção euclidiana (régua e compasso) usando um outro dos métodos já apresentados seguindo vários autores que foram sendo referenciados. Hoje resolvemos um problema de quadrados a partir da análise das propriedades de quadrados, ângulos, … triângulos isósceles,….
Problema: Construir um quadrado de que é dado um segmento de comprimento igual à soma $\;d+l"\;$ dos comprimentos da diagonal e do lado.
F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, Problema 41.
Com o problema resolvido, teríamos um quadrado $\;[ABCD]\;$ sendo $\;AB=BC=CD=DA=l,\; AC=BD=d.\;$ Sabemos que as diagonais de um quadrado são perpendiculares se bissetam num ponto e bissectam os ângulos retos do quadrado. Cada uma das diagonais divide o quadrado em dois triângulos rectângulos isósceles. $\;ABC, \;CDA\;$ por $\;AC\;$ e $\;DAB, \; BCD\;$ por $\;DB.\;$
O que temos é um segmento de reta de comprimento $\;d+l = \overline{AC}+\overline{CD}.\;$ Tomada uma reta qualquer e sobre ela o segmento de reta de extremos $\;A\;$ e $\;E\;$ como uma extensão da diagonal $\;AC,\;$ o vértice $\;C\;$ do quadrado é o ponto que divide $\;AE = d+l\;$ em $\;AC=d\;$ e $\;CE=l.\;$
Chamemos $\;M\;$ ao ponto médio de $\;AE,\;$ podemos construir um triângulo retângulo isósceles de hipotenusa $\;AE\;$ e catetos $\;AF, \;EF\;$ sendo $\;F\;$ a intersecção da perpendicular a $\:AE\,$ tirada por $\;M\,$ com uma semicircunferência de diâmetro $\;AE\;$. Este triângulo isósceles é meio quadrado de diagonal $\;AE\;$ Sobre o cateto $\;AF\;$ deste triângulo $\;AEF,\;$ incidirá o vértice $\;D\;$ do quadrado que procuramos. Como $\;AE\;$ é a reta da diagonal $\;AC, \;\; CD \parallel EF \perp AF\;$
A construção (sintética, a seguir) é sugerida pelas relações desveladas na análise acima feita. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 5}.\;$
8 janeiro 2018, Criado com GeoGebra
Considerando as considerações acima, podemos apresentar em síntese, os passos da nossa construção bem justificados.
Para $\;\fbox{n= 1}:\;$ a figura apresentada ilustra os dados $\;A, \;E,\;AE= d+l$, para além do cursor $\;\fbox{n=1,..., 5}.\;$
Para $\;\fbox{n= 2}:\;$ acrescentamos
- o ponto $\;M\;$ médio de $\;AE\;$ e a perpendicular a $\;AE\;$ tirada por $\;M\;$ — mediatriz — (recorrendo a $\;(A, \;AE). (E,\;EA)),\;$ por exemplo).
- o ponto $\;F\;$ numa intersecção $\; \displaystyle (\perp_M AE) . (M,\;ME)\;$ e os catetos $\;EF, \;FA\;$ triângulo retângulo isósceles de hipotenusa $\;AE.\;$
Para $\;\fbox{n= 3}:\;$ acrescentamos a bissetriz do ângulo $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ que determina o vértice $\;D\;$ do quadrado na sua intersecção com $\;AF. \;$ Como $\;CD \parallel EF\;$ e uma paralela a $\;EF\;$ fará um ângulo da mesma amplitude de $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ sendo ângulo externo do triângulo determinado por estas últimas 3 retas e igual à soma dos ângulos internos a ele não adjacentes e que devem ser de iguais amplitudes —$\;\displaystyle \frac{\pi}{8}\;$ para que os lados opostos a cada um deles sejam iguais, ou seja $\; DC=CE\;$ já que $\;C \;$ é tal que $\;AE = AC+CD=d+l. \;$
Para $\;\fbox{n= 4}:\;$ acrescentam-se
- o ponto $\;C\;$ como $\; (\parallel_D EF).AM\;$
- as retas $\; \displaystyle (\perp_A AF)\;$ e $\; \displaystyle (\perp_C EF)\;$
- o ponto $\;B\;$ como intersecção $\; \displaystyle (\perp_A AF) . (\perp_C EF)\;$
- os segmentos de reta $\; AB, \;BC, \; CD, \;DA\;$ como lados do quadrado que procurámos.
Para $\;\fbox{n= 5}:\;$ realçamos o interior do quadrado $\;[ABCD].\;$ □