Mostrar mensagens com a etiqueta método. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta método. Mostrar todas as mensagens

15.4.18

Circunferência tangente a três outras circunferências


Um exemplo de síntese num problema de construção cujos passos são sugeridos pela análise do problema


Problema: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respetivos raios $\;(A,a), \;(B,b), \;(C, c)\;$

15 abril 2018, Criado com GeoGebra


Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução de problemas de
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Nota (45 de F.G-M.).Há problemas de construção geométrica para os quais basta o recurso a um só teorema para acedermos à solução. Mas para a maioria dos problemas, a resposta não depende de um só resultado já conhecido. E, por isso, para resolver um problema é necessário recorrer a uma sucessão de problemas mais simples. Já percorremos longos caminhos construtivos em que cada passo dado não é mais do que um apoio para o passo seguinte até termos conseguido a solução do problema originalmente proposto. Apresentamos a seguir um problema de construção que analisamos para descobrir a sequência de problemas que é necessário resolver por uma ordem que é a inversa da que vamos seguir quando apresentamos em síntese.


Problema 46: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respectivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
46. Décrire une circonférence tangente à trois circonférences données
$\;A, B, C\;$

Consideremos o problema resolvido, isto é, suponhamos que temos determinada uma circunferência $\;(D, d)\;$ que é tangente a cada uma das circunferências $\;(A, a),\; (B, b), \; (C, c)\;$ dadas pelos respectivos (centro, raio). Consideremos, por exemplo, que $\;(A, a)\;$ é a de menor raio das circunferências dadas: $\;a < b, \;a < c \;$

A distância entre centros de circunferências tangentes é igual à soma dos seus raios e, assim, $\;DA= d+a,\; DB=d+b,\; DC= d+c.\;$ Uma circunferência de centro em $\;D\;$ e raio $\;DA=d+a\;$ é tangente à circunferência de centro em $\;B\;$ e raio $\;DB-DA=d+b-(d+a)=b-a\;$ e também à circunferência de centro em $\;C\;$ e raio $\;DC-DA=d+c-(d+a)=c-a.\;$ Se existir, a circunferência $\;(D, AD)\:$ é tangente a $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e passa por $\;A.$
Consideremos a semelhança (homotetia) entre as circunferências $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e tiremos pelo centro $\;E\;$ da homotetia uma tangente $\;EFG\;$ comum às duas, sendo pontos de tangência $ \;F\;$ e $\;G,\;$ respetivamente de $ \;(B, b-a)\;$ e $\;(C, c-a).\;$

Por isso, podemos dizer que precisamos de resolver o seguinte
Problema 47: Construir uma circunferência que passa por um ponto $\;A\;$ e é tangente a duas circunferências dadas $\;(B,b-a),\; (C, c-a)\;$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
47. Décrire une circonférence qui passe par un point $\;A\;$ et qui soit tangente à deux circonférences données
$\;(B, F)\;$ et $\;(C, G)\;$

A reta $\;EA\;$ intersectará a circunferência $\;(D,d)\;$ num ponto $\;H\;$ tal que $\;EA.EH=EF.EG,\;$ potência de $\;E\;$ relativamente à circunferência $\;(FGH)\;$ ou seja um ponto da circunferência $\;(D,d)\;$ fica determinado na intersecção de $\;EF\;$ com $\;(FGA).\;$
E o nosso problema depende da resolução do

Problema 48: Construir uma circunferência que passa por dois pontos $\;A,\; H\;$ dados e é tangente a uma das circunferências $\;(B, b-a)\;$ ou $\;(C, c-a)\;$ que se resume a construir uma circunferência que passe por três pontos dados $\;F,\;G, \;A.$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
48. Décrire une circonférence qui passe par deux points A, H donnés et qui soit tangente à une circonférence donnée

Ce troisième problème se ramène à ce quatrième : faire passer une circonférence par trois points donnés.

Nota (49a F.G.-M.) As indicações dadas são analíticas, desmontam o problema em vários, mas como cada resultado não é recíproco de nenhum dos outros, é preciso estudar cada um deles com cuidado, para não omitir alguma das soluções. Atente-se:
  1. Há uma só circunferência a passar por três pontos não colineares.
  2. Há duas circunferência a passar por dois pontos e tangente a uma outra circunferência.
  3. Há quatro circunferências a passar por um ponto e tangente a duas outras circunferências
  4. Há oito circunferências tangentes a três outras circunferências.
O método sintético expõe em primeiro lugar o problema mais simples que é o quarto e logo depois o terceiro, o segundo, e finalmente o problema geral, caminho inverso do seguido no método da exposição analítica percorrido, provavelmente seguido por François Viète e, como exemplo de simplificações sucessivas, apresentado por Georges RITT no seu Problèmes de Géometrie.

28.7.14

Resolver problema de construção usando os métodos do problema contrário e transformação (4)


Problema: Inscrever num retângulo $\;[ABCD],\;$ um paralelogramo semelhante a outro $\;[EFGH]\;$ dado.
Vilela, António Lôbo. Métodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
O problema proposto consiste em construir um paralelogramo $\;[E_1F_1G_1H_1]\;$ semelhante a $\;[EFGH]\;$, inscrito no retângulo $\;[ABCD]\;$ dado: $\;E_1 \in AB, \;F_1\in BC, \;G_1 \in CD, \;H_1 \in DA.\;$
Para resolver o problema proposto, começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito a $\;[EFGH]\;]$ ou cujos lados passem pelos vértices $\;E,\;F, \;G,\;H\;$ do paralelogramo.
Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. Na nossa construção, apresentamos como dados um retângulo $\;[ABCD]\;$ e um paralelogramo $\;[EFGH]\;$. Para além disso, apresentamos as diagonais do retângulo $\; AC, \;BD\;$ e o ângulo $\; \alpha\;$ por elas formado. De igual modo, se mostram as diagonais $\;EG, \;FH\;$ do paralelogramo e o ângulo $\;\beta\;$ por elas formado.
    Estes dados são relevantes para qualquer resolução do problema, pois "a condição necessária e suficiente para que dois paralelogramos sejam semelhantes é que sejam iguais os ângulos formados pelas respetivas diagonais".
  2. Começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito ao paralelogramo $\;[EFGH],\;$ ou seja, um retângulo com cada um dos seus lados a passar por um dos vértices do paralelogramo e com as diagonais a fazer ângulo igual ao das retas $\;(AC, \; BD) =137.48^o,\;$ na ilustração.
    • $\fbox{n=2}:\;$ O centro do paralelogramo é o centro do retângulo a ele circunscrito, no caso $\;I.\;$. Para obter uma reta que seja diagonal de um retângulo centrado em $\;I\;$ semelhante a $\;[ABCD]\;$, bastará encontrar um outro ponto da diagonal para além do $\;I\;$, por exemplo, o ponto de interseção imagem da reta de um dos lados, p.e. $\;HE\;$, pela rotação $\;{\cal{R}}(I, \; \alpha)\;$, com a reta do lado consecutivo $\;EF\;$ (Verifique.)
    • $\fbox{n=3}:\;$Para ser retângulo (lados consecutivos perpendiculares) cada um dos seus vértices terá de ser um ponto de circunferência com um dos lados do paralelogramo por diâmetro. No caso da nossa construção, encontramos o primeiro vértice do retângulo circunscrito intersetando a reta obtida como reta diagonal com a circunferência de diâmetro $\;FG\;$. Os lados desse retângulo, a passar por $\;E, \;F, …\;$ são obtidos facilmente.
  3. © geometrias, 27 de Julho de 2014, Criado com GeoGebra


  4. O retângulo obtido é semelhante a $\;[ABCD]\;$, o que significa há uma transformação de semelhança a relacioná-los.
    $\fbox{n=4}:\;$ No caso da nossa construção, escolhemos o vértice $\;R,\;$ por ele tirámos uma paralela a $\;AB\;$ e aplicámos-lhe que a rotação $\;{\cal{R}}(R, \zeta)\;$, de modo a obter pares de lados paralelos a pares de lados paralelos de $\;[ABCD]\;$
    Obtivemos um novo paralelogramo inscrito no novo retângulo ao aplicar-lhe a mesma rotação $\;{\cal{R}}(R, \zeta)\;$, que preserva as incidências, os comprimentos, as amplitudes
  5. $\fbox{n=5}:\;$ Finalmente a este novo retângulo do qual os pontos $\;R, \;S\;$ são vértices, aplicamos a homotetia de centro em $\;CR.DS\;$ e razão $\; \displaystyle \frac{CD}{RS}\;$ que transforma $\;C\;$ em $\;R\;$ e $\;D\;$ em $\;S\;$
  6. $\fbox{n=6}:\;$Obviamente que, por essa homotetia, o paralelogramo laranja da figura que está inscrito no retângulo laranja (obtidos pela rotação $\;{\cal{R}}(R, \zeta)\;$ é transformado no paralelogramo $\;[E_1F_1G_1H_1]\;$ que, porque a homotetia preserva incidências, etc, é um paralelogramo inscrito em $\;[ABCD]\;$ semelhante a $\;[EFGH]\;$.
Claro que usámos transformações e podemos dizer, por isso, que usámos o método das transformações. O que é o mais natural é usarmos vários métodos para resolver qualquer problema. E, mesmo quando não o referimos, o mais natural é que face a um problema comecemos por usar a análise e acabemos a usar a síntese que são os raciocínios gerais em geometria, essenciais para resolver problemas de construção.

8.7.14

Resolver problema de construção usando análise e síntese (8)


Problema:     Construir um paralelogramo sendo dados os comprimentos de um lado e das duas diagonais.
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Com o problema resolvido, teríamos um paralelogramo $\;[ABCD]\;$ sendo $\;AB=a,\; AC=d_1, \; BC=d_2.\;$ Sabemos que as diagonais de um paralelogramo se bissetam num ponto, chamemos-lhe $\;M.\;$
$\;[ABM]\;$ é um triângulo de lados $\;AB=a, \; \displaystyle AM=\frac{d_1}{2}, \;BM=\frac{d_2}{2}\;$ e o paralelogramo é composto de 2 pares de triângulos iguais.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise do problema resolvido. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 8 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que, nas condições do problema, podemos construir um triângulo usando os comprimentos dados e que, a partir dele, podemos construir o paralelogramo que procuramos.
  2. Comecemos por tomar para $\;A\;$ um ponto qualquer do plano e para ponto $\;B\;$ um ponto qualquer da circunferência $\;(A,\;a), \;$ à distância $\;a\;$ de $\;A\;$.
  3. As diagonais do paralelogramo bissetam-se num ponto $\;M,\;$ escolhemos um dos pontos da interseção $\;\left(A,\;\displaystyle \frac{d_1}{2}\right). \left(B, \displaystyle\frac{d_2}{2}\right).\;$
  4. A construção do triângulo $\;[ABM]\;$ é decisiva para a resolução do problema, ou mais simplesmente, fundamental é determinar o ponto $\;M.\;$
  5. $C, \;D\;$ determinam-se assim: $\left(M,\;MA\right). MA =\{A,\; C\}$
    $\left(B, \;BM\right).BM=\{B, \;D\}.\;$ $\;D\;$ pode ser obtido como interseção das retas: paralela a $\;AB\;$ tirada por $\;C\;$ e paralela a $\;BC\;$ tirada por $\;A$.
  6. $\;[ABCD]\;$ é o paralelogramo que procuramos.     □
Para que o nosso problema tenha soluções é necessário e suficiente que se possa construir o triângulo $\;[ABM]\;$ ou que $$ AB < BM+MA \;\;\; \wedge \;\;\; BM < MA+ AB \;\;\; \wedge \;\;\; MA< BM+AB $$ $$a<\frac{d_1+d_2}{2} \;\;\; \wedge \;\;\; \frac{d_1}{2} < a+ \frac{d_2}{2} \;\;\;\wedge \;\;\;\frac{d_2}{2}< a+\frac{d_1}{2}\;$$ que é o mesmo que $$a<\frac{1}{2}(d_1+d_2) \;\;\; \wedge \;\;\; \frac{1}{2}(d_1-d_2) < a \;\;\; \wedge \;\;\; \frac{1}{2} (d_2-d_1) < a $$ ou $$ \frac{1}{2}\left| \;d_1-d_2\; \right| \; < \;a\; < \;\frac{1}{2}(d_1+d_2) $$.