Mostrar mensagens com a etiqueta transformações geométricas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta transformações geométricas. Mostrar todas as mensagens

1.6.14

Resolver problema de construção, usando meias voltas e translações


Problema:     São dados cinco pontos $\;A, \;B, \;C, \;D, \;E$. Estes pontos são os pontos médios dos lados de um pentágono $\;PQRST\;$ desconhecido. Reconstruir o pentágono.
Este problema está referido no livro Simetrias e Transformações Geométricas de Eduardo Veloso (p.15) e já aqui foi citado, bem como o artigo Cinco pontos, um problema e cinco resoluções, publicado no número 79 da revista Educação e Matemática de Setembro/Outubro de 2004. Recomendamos a leitura do artigo que conta uma história e apresenta 5 resoluções. Na circunstância, chamamos a atenção para a resolução usando transformações de Maria Dedò.
O enunciado é o que José Paulo Viana propõe numa mensagem a Eduardo Veloso.
A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas. Clicando nos sucessivos botões 2, 3, ... acompanha os passos da resolução/demonstração(?).
  1. Estão dados os pontos $\;A, \;B, \;C, \;D, \;E$ médios dos lados do pentágono de vértices $\;P, \;Q, \;R,\;S,\;T\;$ cujas posições desconhecemos e queremos construir.
  2. Consideremos $\;A\;$ ponto médio de $\;PQ\;$, $\;B\;$ ponto médio de $\;QR\;$, $\;C\;$ ponto médio de $\;RS\;$, $\;D\;$ ponto médio de $\;ST\;$, $\;E\;$ ponto médio de $\;TP\;$.
    Sejam quais forem as posições de $\;P\;$ e de $\;Q\;$, sabemos que estão relacionados por uma transformação de meia volta centrada em $\;A\;$; $\;Q\;$ e $\;R\;$ estão relacionados por uma meia volta centrada em $\;B\;$ …
    Não sabendo a posição de $\;P\;$, tomemos $\;P_1\;$ para uma "falsa" posição de $\;P$artida. E $$\begin{matrix} &{\cal{R}}(A, 180^o)&&{\cal{R}}(B, 180^o)&&{\cal{R}}(C, 180^o)&&{\cal{R}}(D, 180^o)&&{\cal{R}}(E, 180^o)&\\ P_1& \longmapsto& P_2 &\longmapsto&P_3&\longmapsto& P_4 &\longmapsto&P_5 & \longmapsto & P'_1\\ \end{matrix}$$


  3. © geometrias, 1 de Junho de 2014, Criado com GeoGebra



  4. Fácil é verificar que a composta de duas meias voltas é uma translação: $$\forall P_1, \;\;\left({\cal{R}}(B, 180^o) \circ {\cal{R}}(A, 180^o)\right) (P_1)={\cal{R}}(B, 180^o)\left( {\cal{R}}(A, 180^o ) (P_1)\right)={\cal{R}}(B, 180^o) (P_2) = P_3 $$ $$ {\cal{R}}(B, 180^o) \circ {\cal{R}}(A, 180^o) = {\cal{T}}_{2\overrightarrow{AB}}: \;\;\;\; P_1 \longmapsto P_3$$ Do mesmo modo, $$ {\cal{R}}(C, 180^o) \circ {\cal{R}}(D, 180^o) = {\cal{T}}_{2\overrightarrow{CD}}: \;\;\;\; P_3 \longmapsto P_5$$ A composta das duas translações é uma translação. Assim: $${\cal{T}}_{2\overrightarrow{CD}} \circ {\cal{T}}_{2\overrightarrow{AB}} = {\cal{T}}_{2(\overrightarrow{AB}+\overrightarrow{CD})} : \;\;\; P_1 \longmapsto P_5 $$ que é o mesmo que dizer que as quatro primeiras meias voltas são equivalentes a uma translação.
  5. Se a composta de duas meias voltas é uma translação, a composta de uma translação com uma meia volta é uma meia volta: $$\begin{matrix} &{\cal{T}}_{2(\overrightarrow{AB}+\overrightarrow{CD})}&&{\cal{R}}(E, 180^o)&\\ P_1 & \longmapsto & P_5 & \longmapsto & P'_1 \end{matrix}$$ Se $\;P_1\;$ fosse a posição verdadeira de $\;P\;$, então seria $\;P_2 \equiv Q, \; \;P_3 \equiv R, \;\;P_4 \equiv S, \;\;P_5 \equiv T, \; \;\;\;P'_1 \equiv P$.
    Para a meia volta que a $\;P_1 \;$ faz corresponder $\;P'_1\;$ tem um ponto invariante, o centro da meia volta que é o ponto médio de todos os segmentos $P_1P'_1$ em que $\;P_1\;$ é um ponto qualquer de $\;P'_1\;$ é o seu correspondente por cinco meias voltas sucessivas: de centros $\;A, \;B, \;C, \;D, \;E$.
    É esse ponto médio de todos os $\;P_1P'_1\;$ que tomamos para $\;P\;$
    Variando as posições de $\;P_1\;$, podemos constatar que a posição de $\;P\;$ fica invariante.
  6. Finalmente, pode constatar que a sucessão de meias voltas de centros $\;A, \;B, \;C, \;D, \;E$ permite determinar os vértices $\;Q, \;R, \;S, \;T\;$ sendo $$\begin{matrix} &{\cal{R}}(A, 180^o)&&{\cal{R}}(B, 180^o)&&{\cal{R}}(C, 180^o)&&{\cal{R}}(D, 180^o)&&{\cal{R}}(E, 180^o)&\\ P& \longmapsto & Q & \longmapsto &R &\longmapsto & S& \longmapsto &T&\longmapsto& P\\ \end{matrix}$$
Pode variar as posições de $\;A, \;B,\;C,\;D, \;E\;$ e de $\;P_1\;$.

12.5.14

Resolver problema de construção usando homotetia


Problema:     Desenhar uma circunferência que passa por um ponto dado, $\;A\;$, que seja tangente a duas retas dadas $\;a, \;b$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 12 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 5}\;$ ao fundo à direita, pode seguir os passos da construção.
  1. São dados um ponto $\;A\;$ e duas retas $\;a, \;b$.
  2. Para que uma circunferência seja tangente a duas retas $\;a, \;b\;$ é preciso que tenha centro equidistante delas. Esse centro está sobre uma bissetriz do ângulo das duas retas quando elas se intersetam ou sobre uma reta paralela a $\;a, \;b\;$ quando estas são paralelas. No caso da nossa construção, as retas $\;a.b\;$ são concorrentes em $\;O$. E, como sabemos, na bissetriz do ângulo das duas retas incidirá o centro de qualquer das circunferências tangentes a $\;a\;$ e $\;b$.
  3. Tomamos um ponto $\;G\;$ sobre a bissetriz e a circunferência nele centrada tangente a $\;a\;$ em $\;I\;$ e a $\;b\;$ em $\;H\;$.
  4. Duas circunferências tangentes a $\;a\;$ e $\;b$ são correspondentes por alguma homotetia de centro $\;O$; Para determinar a homotetia entre uma circunferência $\;(G)\;$ e a circunferência que passa por $\;A\;$, basta traçar a reta $\;OA\;$ e a sua interseção $\;J\;$ com $\;(G)\;$. A homotetia de centro em $\;O\;$ que transforma $\;J\;$ em $\;A\;$ transforma $\;G\;$ em $\;K\;$, este obtido pela interseção da bissetriz com a paralela a $\;JG\;$ tirada por $\;A$.
  5. A circunferência de centro em $\;K\;$ que passa por $\;A\;$ é a homotética de $\;(G)\;$ tangente à reta $\;a\;$ no homotético de $\;I\;$ e à $\;b\;$ no homotético de $\;H\;$

16.4.14

Transformações geométricas do plano: generalidades.

Ao longo dos anos, fomos abordando e usando transformações geométricas do plano, em resposta a necessidades de estudo circunstanciais. Como agora vai acontecer, de resto.
Nas próximas entradas, vamos resolver problemas de construção geométrica com recurso a transformações geométricas ou usando o método das transformações, como escreve Howard Eves em Fundamentals of Modern Elementary Geometry já referido em várias entradas.
Repetidamente, Eduardo Veloso tem chamado a atenção para a falta das transformações geométricas na formação dos professores e no ensino, considerando que "as transformações são apenas tocadas ao de leve no ensino básico e completamente ignoradas no ensino secundário" (Educação Matemática nº 79 de 2004). Nessa reflexão publicada, sob o título "Cinco pontos, um problema e cinco soluções", Eduardo Veloso tenta uma explicação para não utilizarmos as transformações geométricas para a demonstração e/ou resolução de problemas de construção. Já no livro "Geometrias - Temas Actuais", Eduardo Veloso refere as diferentes perspectivas, desde a geometria sintética, passando pelo método das coordenadas (geometria analítica) até ao que designa como método das transformações geométricas (perspetiva funcional da geometria) para a resolução de problemas geométricos. Ao lado dessas perspectivas, Eduardo Veloso acrescenta a perspectiva vectorial (autónoma da geometria analitica). Recorrendo aos diversos métodos e perspectivas, apresenta diferentes resoluções de um mesmo problema e diferentes demonstrações de um mesmo teorema.
Mais recentemente, no seu livro "Simetrias e Transformações Geométricas", Eduardo Veloso volta a insistir no uso das transformações geométricas na resolução de problemas de construção geométrica, apresentando diversas propostas de trabalho nesse sentido.

Transformações geométricas do plano: generalidades

Definições e notações:
  1. Seja $f$ uma correspondência que associa a cada ponto $P$ do plano (ou ${\rm I\kern-.17em R}^2 $) um e um só ponto $P' =f(P)$ do plano (ou ${\rm I\kern-.17em R}^2 $): $$P \neq Q \Rightarrow f(P) \neq f(Q)$$ $$ \forall Q, \; \exists P :\; f(P)=Q$$ Chamamos transformação geométrica do plano a uma correspondência $f$, biunívoca, entre os pontos do plano, assim definida.
  2. Se $f$ e $g$ são duas transformações geométricas do plano, a correspondência que resulta de as aplicarmos sucessivamente, $g$ após $f$, é obviamente uma transformação geométrica. Escrevemos $$\begin{matrix} &g&&f&\\ P& \longmapsto & Q&\longmapsto R \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \begin{matrix} &g\circ f& \\ P \:\:\:\: &\longmapsto & R \end{matrix} $$ $$ g\circ f(P) = g(f(P)) = g(Q) = R$$. Chamamos composição (ou produto) de $f$ com $g$ à transformação geométrica $g\circ f$. Claro que, se $f$ e $g$ são transformações geométricas, $f\circ g$ também é transformação geométrica.
  3. Se $f$ é uma transformação geométrica do plano tal que $$\begin{matrix} &f&\\ P& \longmapsto & Q \end{matrix}, $$ também é transformação geométrica a correspondência $f'$ tal que $$\begin{matrix} &f'&\\ Q& \longmapsto & P \end{matrix}$$ a que chamamos inversa de $f$ e representamos por $f^{-1}$.
  4. Há uma transformação geométrica a que chamamos identidade do plano, que faz corresponder a si mesmo cada ponto $P$ do plano $$\begin{matrix} &id&\\ P& \longmapsto & P \end{matrix} $$
  5. É claro que $f^{-1}(f(P))=f^{-1}(Q)=P\; \;\;$ e $\; \;\;f(f^{-1}(Q)) = f(P) =Q$. E escrevemos $$\begin{matrix} &f&&f^{-1}&\\ Q& \longmapsto & P&\longmapsto Q \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f\circ f^{-1}=id&\\ Q& \:\:\:\:\longmapsto & Q \end{matrix} $$ $$\begin{matrix} &f^{-1}&&f&\\ P& \longmapsto & Q&\longmapsto P \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f^{-1}\circ f=id&\\ P& \:\:\:\:\longmapsto & P \end{matrix} $$
  6. O conjunto das transformações geométricas munido com a operação binária composição (ou produto) é um grupo

8.3.14

Usando lugares geométricos para resolver problemas de construção (8)


Problema:Construir um triângulo de que se conhecem um ângulo, o lado a ele oposto e a mediana relativa ao lado conhecido.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Dados: dois pontos $\;B\;C\;$,segmento $\;a=BC\;$,comprimento da mediana $\;m_{BC}$, ângulo de amplitude $\;\alpha\;$.
2.
A resolução do problema resume-se a encontrar pontos $\;A\;$ , 3º vértice do triângulo $\;ABC\;$ de que se conhecem $\;B,\;C\;$, sabendo que $\;\angle B\hat{A}C\;$ terá de ser igual a $\;\alpha\;$ e $\;AM_{BC}=m_{BC}\;$
  1. O 5º lugar geométrico da lista diz-nos que os pontos, dos quais partem retas para os extremos $\;B,\;C\;$ de um segmento fazendo um ângulo $\;\alpha\;$, estão sobre dois arcos congruentes de duas circunferências com uma corda - $\;a=BC\;$ - comum.
  2. O lugar geométrico dos pontos à distância $\; m_{BC}\;$ de $\;M_{BC}\;$, ponto médio de $\;BC\;$, estão na circunferência de centro $\;M_{BC};$ e raio $\; m_{BC}\;$ (1º lugar geométrico da lista)


© geometrias, 8 de Março de 2014, Criado com GeoGebra


3.
A interseção dos lugares geométricos (5º e 1º, para os dados do problema) são os pontos $\;A, \; \; A_1 ,\; A_2 ,\; A_3\;$.
Há, em consequência, quatro triângulos $\;ABC, \; \; A_1 BC ,\; A_2 BC,\; A_3 BC\;$, a vermelho na figura, que satisfazem as condições requeridas

6.3.14

Usando lugares geométricos para resolver problemas de construção (6)


Problema: Construir uma circunferência tangente a duas retas paralelas dadas e a passar por um ponto dado.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Temos inicialmente duas retas paralelas $\;a,\;b\;$ e um ponto $\;P\;$ dados .
2.
A resolução do problema resume-se a encontrar pontos $\;O\;$ a igual distância das retas paralelas e do ponto $\;P\;$.
  1. O 2º lugar geométrico da lista diz-nos que os pontos equidistantes de uma reta $\;m\;$ estão sobre retas paralelas a ela. Assim, é óbvio que o lugar geométrico dos pontos $\;M\;$ equidistantes das retas $\;a, \; b\;$ à distãncia $\;d\;$ uma da outra, será a reta a elas paralela e a meia distância $\; \displaystyle \frac{d}{2}\;$ entre $\;a\;$ e $\;b\;$. Os pontos $\;O\;$ procurados estão, por isso, sobre $\;m\;$.
  2. O lugar geométrico dos pontos à dstância $\; \displaystyle \frac{d}{2}\;$ de $\;P\;$ estão na circunferência de centro $\;P\;$ e raio $\; \displaystyle \frac{d}{2}\;$ (1º lugar geométrico da lista)


© geometrias, 6 de Março de 2014, Criado com GeoGebra


3.
A interseção dos lugares geométricos (1º e 2º, para os dados do problema) são os pontos $\;O_1 \;\mbox{e} \; O_2 \;$ Há, em consequência, duas circunferências de raio $\; \displaystyle \frac{d}{2}\;$ e centros $\;O_1 \;\mbox{e}\; O_2 \;$ que são soluções do problema.