Mostrar mensagens com a etiqueta tangências. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta tangências. Mostrar todas as mensagens

5.10.21

Problema resolvido?


Problema:
Num plano são dados: uma circunferência de raio $\;r \;$ e centro $\;P\;$ e uma reta $\;l\;$, sendo $\;d \;$ a distância de $\;P \;$ a $\;l \;$ tal que $\;d \;>\; r \;$.
Se tomarmos $\;M \;$ e $\;N \;$ sobre $\;r \;$ de tal modo que a circunferência de diâmetro $\;MN \;$ seja tangente exterior à circunferência dada. Mostre que existe um ponto $\;A \;$ do plano para o qual todos os segmentos $\;MN \;$ subentendem um ângulo $\;\angle MÂN \;$ constante.

Tiramos um ponto $\;O(0,\;0) \;$, uma reta $\;Ox =l\;$ e uma $\; Oy \;$ (perpendicular a $\; Ox \;$ tirada por $\; O \;$), um ponto $\;P(O,\;d) \;$ de $\; Oy \;$ para centro de uma circunferência de raio $\; r \;$ sendo $\; d > r \;$.
Tomamos por $\; P \;$ uma reta que intersecta $\; Ox \;$ num ponto $\; C(h, 0) \;$ que é centro da circunferência tangente à circunferência $\;(P,\;r) \;$, como na figura se ilustra.



@ geometrias, 5 de Outubro de 2021, Criado com GeoGebra

O centro $\; C\;$ de uma circunferência tangente exterior à dada $\;(P,r) \;$ deve ter um raio $\; s \;$ tal que $\; PC =(r+s)\;$ é hipotenusa do triângulo $\;\Delta [OCP]\;$ rectângulo em $\; O \;$ e, pelo Teorema de Pitágoras, $$\; d^2 + h^2 = (r+s)^2$$
Aos extremos do diâmetro da circunferência $\;(C, s)\;$ cortada por $\;Ox\;$ na nossa construção, chamamos $\; M=(h-s, 0)\;$ e $\;\;N=(h+s,0)\;$.
Aceitemos que existe um ponto de $\;Oy, \;\;A(0,\;k), k>0\;$ que satisfaz a condição do problema, ou seja, tal que as amplitudes dos ângulos $\; \angle MAN \;$ se mantêm invariáveis.
Se tirarmos por $\;O \;$ uma reta tangente à circunferência $\;(P,r),\;$ ficamos com um triângulo $\;\Delta[OTP]\;$, retângulo em $\;T\;$, para além do triângulo $\;\Delta[COP]\;$ rectângulo em $\;O\;$.
A circunferência $\;(O,\;T)\;$ corta $\;Oy\;$ num ponto que designamos por $\; A \;$ e, como nos parece óbvio, só nos falta provar que a amplitude $\; \angle MÂN \;$ em causa se mantém invariável, no caso de tomarmos pelo mesmo processo outras retas $\;P, \;C\;$ perpendiculares a tangentes da circunferência $\;(P,\;r)\;$....
Tal se pode provar, recorrendo à circunferência $\; (A,\; O)\;$ e aos seus diferentes sectores circulares com centro em O e construídos de igual modo ao primeiro sempre com as tangentes a $\;(P,\;r).\;$
Não dependem dos raios $\;s\;$ e deslocando o ponto $\; C\;$ podem ser vistos e vista a sua constância em amplitude dos sectores circulares de $\;(A,O).\;$ $\hspace{0.5 cm}\square$

27.10.14

Seis círculos gémeos num quadrado


Problema: É dado um quadrado $\;[ABCD],\;$ dividido pela diagonal $\;BD\;$ em dois triângulos isósceles iguais. O triângulo $\;ABD\;$ está dividido por $\;DP\;$ em dois triângulos $\;[APD]\;$ e $\;[PBD]\;$ que admitem incírculos congruentes.
Determinar o raio destes incírculos em função do lado do quadrado.
  1. Na anterior entrada de 18.10.14 Triângulo dividido em dois triângulos com incírculos gémeos demonstrámos que para um triângulo, como $\;[DAB]\;$ na figura, $\;DP = \displaystyle \sqrt{p(p-a)},\;$ em que $\; a=AB=DA, \;2p= DA+AB+BD. \; \;$
    Este resultado permite determinar, com régua e compasso, $\;PD\;$ e os triângulos $\;[APD]\;$ e $\;[PBD]\;$ que circunscrevem as circunferências gémeas.

  2. © geometrias, 25 de Outubro de 2014, Criado com GeoGebra


    Clicando no botão "□azulejo" pode ver o quadrado com seis círculos gémeos, assim construídos.

  3. No triângulo $\;[DAB],\;$ como $\;DA=AB = a\;$ e $\;DB=\sqrt{2} a,\;$
    o seu semi-perímetro é $\;p = \displaystyle \frac{2a+\sqrt{2} a}{2} =a+\frac{\sqrt{2}}{2} a\;\;\;$ e $\;\;\;\;p-a =\displaystyle \frac{\sqrt{2}}{2} a.\;$
    E, em consequência, $\;DP^2 = p(p-a) = \displaystyle \left(a+\frac{\sqrt{2}}{2} a \right) \frac{\sqrt{2}}{2} a = \frac{\sqrt{2}+1}{2} a^2\;$
    Obtém-se assim o valor de $\;DP\;$ em função de $\;a\;$.
    E, claro, podemos obter também imediatamente uma expressão para $\;AP\;$ em função de $\;a:\;$
    $\; AP^2 = PD^2 - DA^2 = \displaystyle\frac{\sqrt{2}+1}{2} a^2 - a^2 = \left(\frac{ \sqrt{2} +1}{2} -1\right) a^2 = \frac{\sqrt{2}-1}{2} a^2\;$

  4. Por outro lado, na entrada de 13.9.14 Círculo "misto" de um triângulo retãngulo mostrámos que o raio $\;k\;$ do incírculo de um triângulo $\;[PDA]\;$ retângulo em $\;A\;$, é dado por $\;k= \displaystyle \frac{DA+AP-PD}{2}.\;$

    Assim, em função de $\;a\;$ o valor de $\;k\;$ é:
    $\; \displaystyle \frac{1}{2} (DA+AP-PD) = \frac{1}{2}\left( a + \displaystyle \sqrt{\frac{\sqrt{2}-1}{2}} a - \sqrt{\frac{\sqrt{2}+1}{2}} a \right).\;$
    Concluindo $$k= \frac{a}{2}\left( 1 + \displaystyle \sqrt{\frac{\sqrt{2}-1}{2}} - \sqrt{\frac{\sqrt{2}+1}{2}}\right)$$

J. Marshall Unger, A collection of 30 Sangaku Problems, Ohhio State University.
(sugestões de António Aurélio Fernandes)

29.9.14

Seis círculos gémeos num retângulo


Problema: Na figura abaixo, cada um de seis círculos é tangente a três outros e quatro deles são também tangentes a um ou dois lados do retângulo que os contém. Determinar as relações entre o raio dos círculos iguais e as dimensões do retângulo.

© geometrias, 27 de Setembro de 2014, Criado com GeoGebra


Clique no botão de mostrar e ocultar     [□auxiliares]    para tornar visiveis pontos e segmentos auxiliares e as designações que lhe foram atribuídas para acompanhar a descrição da construção e dos cálculos.

Sejam $\;a=MN\;$ e $\;b=NO\;$ as dimensões do retângulo $\;[MNOP]\;$ e tomemos para unidade o diâmetro dos círculos amarelos.
Por simples observação da figura, temos $$\;AB=3, \;AD=1, \; AC=b-1, \;BC= a-1, \; AF=AD=DF=1 \;BE= \displaystyle \frac{5}{2}$$
  1. Como $\;AFD\;$ é equilátero, $\;DE\;$ é a sua altura e, aplicando o Teorema de Pitágoras a $\;ADE,\;$ temos $\;DE^2= AD^2-AE^2,\; BE=\displaystyle \frac{5}{2} \;$ ou seja, $\;DE^2 =1 -(\displaystyle \frac{1}{2})^2 = \frac{3}{4} :\; DE=\frac{\sqrt{3}}{2}\;$
  2. Aplicando o Teorema de Pitágoras ao triângulo $\;BED\;$, obtém-se $\;BD^2 = BE^2 + ED^2\;$ ou $\;BD^2= \displaystyle \frac{25}{4}+\frac{3}{4} =\frac{28}{4}: \; BD=\sqrt{7},\;$ e, como $\;BC= BD+DC, \;$ ou $a-1 = \sqrt{7}r+DC, \;$ então $\;DC= a-1-\sqrt{7}$
  3. Aplicando agora o Teorema de Pitágoras aos triângulos $\;ABC\;$ e $\;ACD,\;$ obtemos $$\begin{matrix} (a-1)^2 + (b-1)^2 =9 &\; \wedge \; &\left(a-1-\sqrt{7}\right)^2 +(b-1)^2 =1\\ (a-1)^2 -(a-1-\sqrt{7})^2 =8 &\;\wedge \; & \ldots \\ (a-1)^2 -(a-1)^2 -7 +2(a-1)\sqrt{7}=8 &\; \wedge \;& \ldots \\ 2(a-1)\sqrt{7}=15 &\; \wedge \;&\left(\frac{15\sqrt{7}}{14} -\sqrt{7}\right)^2 +(b-1)^2 =1 \\ a= 1+\frac{15}{2\sqrt{7}} &\;\wedge \; &\left(\frac{\sqrt{7}}{14}\right)^2 +(b-1)^2 =1 \\ \ldots & \; \wedge \; & (b-1)^2 = 1- \frac{1}{28}\\ \ldots & \;\wedge \;& b-1 =\sqrt{\frac{27}{28}}\\ a= 1+\frac{15}{2\sqrt{7}} &\;\wedge \; & b = 1+ \frac{3\sqrt{3}}{2\sqrt{7}} \;\;\; \; \square \end{matrix} $$ tomando para unidade o diâmetro dos círculos iguais.

em Garcia Capitán, F. J. Resolución de problemas bonitos de Geometría con métodos elementales Priego de Córdoba, 2003 sugerido por António Aurélio Fernandes

13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.