Processing math: 100%
Mostrar mensagens com a etiqueta (visto em Gallica BNF). Mostrar todas as mensagens
Mostrar mensagens com a etiqueta (visto em Gallica BNF). Mostrar todas as mensagens

28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo \;A\in FE, \;B \in ED, \;C \in DF\;



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor \;\fbox{n= 1, 2, … 10}\; pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points \;A, \;B, \;C,\; et une circonférence; inscrire dans cette circonférence un triangle \;DEF,\; tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo \;GF\; paralela a \;BC\; e que \;GE\; interseta \;BC\; em \;H,\; sendo iguais os ângulos (\;BHE\; ou) \;\angle B\hat{H}G\; e \: \angle H\hat{G}F\; alternos internos no sistema de retas paralelas \;GF,\; BC\; cortadas pela secante \;HG\; e também \;\angle H\hat{G}F; e \;BDC\; são iguais por estarem inscritos num mesmo arco \;ETF.\; Assim sendo, são semelhantes os triângulos \;BHE\; e \;BCD\; com o ângulo \;B\; comum e os ângulos \;BHE\; e \;CDB\; iguais. E, pelo menos, o ponto \;H\; pode ser determinado por \;HB.BC=BT^2.\;
Começamos por aí.
É preciso determinar um dos pontos \;D,\; E\; ou \;F\; para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points \;A, \;H,\; une circonférence et une droite \;BC.\; Déterminer sur cette circonférence un point \;E,\; tel qu'en le joignant aux deux points donnés \;A,\; H,\; la corde \;FG\; soit parallèle à la droite \;BC.\; Soit le problème résolu et \;FG\; parallèle à \;BC.\;



Consideremos o problema resolvido e \;FG\; paralela a \;BC.\; De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a \;HA\; tirada por \;F,\; que intersecta a circunferência dada em \;L\; e traçamos a reta \;LG\; que intersecta \;HA\; em \;M.\;

Nestas condições, temos \; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi,
\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\;
e, em consequência,
\Delta [HGM] \sim \Delta [HEA],\; dos quais \angle \hat{H}\; é ângulo comum. E é essa semelhança que nos permite escrever \frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 que nos permite determinar sobre \;HA\; o ponto \;M,\; colinear de \;G, \;L\; sendo
\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné \;M,\; mener une sécante telle que l'angle inscrit \;L\hat{F}G\;, qui correspond à la corde interseptée \;GL,\; soit égale à un anglé donnée \;A\hat{H}B.\;



Por um ponto qualquer da circunferência dada, tiramos paralelas a \;BH\; e a \;MH\; ou seja inscrevemos na circunferência um ângulo de amplitude igual a \; \angle B\hat{H}M\;
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a \; \angle B\hat{H}M,\; o problema de Castillon fica resolvido tirando por \;M\; a tangente a ela que intersectará a circunferência inicialmente dada nos pontos \;G, L\;

Por esse ponto \;G\;, finalmente determinado, a paralela a \;BC\; por ele tirada intersecta a circunferência inicial em \;F.\;
\;D\; ficará determinado na circunferência pela reta \;CF\; e
o ponto \;E\; ficará determinado sobre a circunferência pela reta \;DB\; ou pela reta \;FA.\;\blacksquare

31.12.17

Problema de construção —análise e síntese (9)


De vez em quando vamos acrescentando problemas de construção euclidiana (régua e compasso) usando um outro dos métodos já apresentados seguindo vários autores que foram sendo referenciados. Hoje resolvemos um problema de quadrados a partir da análise das propriedades de quadrados, ângulos, … triângulos isósceles,….

Problema: Construir um quadrado de que é dado um segmento de comprimento igual à soma \;d+l"\; dos comprimentos da diagonal e do lado.


F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, Problema 41.

Análise do problema:
Com o problema resolvido, teríamos um quadrado \;[ABCD]\; sendo \;AB=BC=CD=DA=l,\; AC=BD=d.\; Sabemos que as diagonais de um quadrado são perpendiculares se bissetam num ponto e bissectam os ângulos retos do quadrado. Cada uma das diagonais divide o quadrado em dois triângulos rectângulos isósceles. \;ABC, \;CDA\; por \;AC\; e \;DAB, \; BCD\; por \;DB.\;
O que temos é um segmento de reta de comprimento \;d+l = \overline{AC}+\overline{CD}.\; Tomada uma reta qualquer e sobre ela o segmento de reta de extremos \;A\; e \;E\; como uma extensão da diagonal \;AC,\; o vértice \;C\; do quadrado é o ponto que divide \;AE = d+l\; em \;AC=d\; e \;CE=l.\;
Chamemos \;M\; ao ponto médio de \;AE,\; podemos construir um triângulo retângulo isósceles de hipotenusa \;AE\; e catetos \;AF, \;EF\; sendo \;F\; a intersecção da perpendicular a \:AE\, tirada por \;M\, com uma semicircunferência de diâmetro \;AE\;. Este triângulo isósceles é meio quadrado de diagonal \;AE\; Sobre o cateto \;AF\; deste triângulo \;AEF,\; incidirá o vértice \;D\; do quadrado que procuramos. Como \;AE\; é a reta da diagonal \;AC, \;\; CD \parallel EF \perp AF\;


A construção (sintética, a seguir) é sugerida pelas relações desveladas na análise acima feita. Pode segui-la fazendo variar os valores de \;n\; no cursor \;\fbox{n=1,..., 5}.\;



8 janeiro 2018, Criado com GeoGebra


Considerando as considerações acima, podemos apresentar em síntese, os passos da nossa construção bem justificados.

Para \;\fbox{n= 1}:\; a figura apresentada ilustra os dados \;A, \;E,\;AE= d+l, para além do cursor \;\fbox{n=1,..., 5}.\;

Para \;\fbox{n= 2}:\; acrescentamos

  • o ponto \;M\; médio de \;AE\; e a perpendicular a \;AE\; tirada por \;M\; — mediatriz — (recorrendo a \;(A, \;AE). (E,\;EA)),\; por exemplo).
  • o ponto \;F\; numa intersecção \; \displaystyle (\perp_M AE) . (M,\;ME)\; e os catetos \;EF, \;FA\; triângulo retângulo isósceles de hipotenusa \;AE.\;

Para \;\fbox{n= 3}:\; acrescentamos a bissetriz do ângulo \; \displaystyle A\hat{E}F =\frac{\pi}{4}\; que determina o vértice \;D\; do quadrado na sua intersecção com \;AF. \; Como \;CD \parallel EF\; e uma paralela a \;EF\; fará um ângulo da mesma amplitude de \; \displaystyle A\hat{E}F =\frac{\pi}{4}\; sendo ângulo externo do triângulo determinado por estas últimas 3 retas e igual à soma dos ângulos internos a ele não adjacentes e que devem ser de iguais amplitudes —\;\displaystyle \frac{\pi}{8}\; para que os lados opostos a cada um deles sejam iguais, ou seja \; DC=CE\; já que \;C \; é tal que \;AE = AC+CD=d+l. \;

Para \;\fbox{n= 4}:\; acrescentam-se

  • o ponto \;C\; como \; (\parallel_D EF).AM\;
  • as retas \; \displaystyle (\perp_A AF)\; e \; \displaystyle (\perp_C EF)\;
  • o ponto \;B\; como intersecção \; \displaystyle (\perp_A AF) . (\perp_C EF)\;
  • os segmentos de reta \; AB, \;BC, \; CD, \;DA\; como lados do quadrado que procurámos.

Para \;\fbox{n= 5}:\; realçamos o interior do quadrado \;[ABCD].\;      □