Mostrar mensagens com a etiqueta (visto em Gallica BNF). Mostrar todas as mensagens
Mostrar mensagens com a etiqueta (visto em Gallica BNF). Mostrar todas as mensagens

28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo $\;A\in FE, \;B \in ED, \;C \in DF\;$



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor $\;\fbox{n= 1, 2, … 10}\;$ pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points $\;A, \;B, \;C,\;$ et une circonférence; inscrire dans cette circonférence un triangle $\;DEF,\;$ tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo $\;GF\;$ paralela a $\;BC\;$ e que $\;GE\;$ interseta $\;BC\;$ em $\;H,\;$ sendo iguais os ângulos ($\;BHE\;$ ou) $\;\angle B\hat{H}G\;$ e $\: \angle H\hat{G}F\;$ alternos internos no sistema de retas paralelas $\;GF,\; BC\;$ cortadas pela secante $\;HG\;$ e também $\;\angle H\hat{G}F;$ e $\;BDC\;$ são iguais por estarem inscritos num mesmo arco $\;ETF.\;$ Assim sendo, são semelhantes os triângulos $\;BHE\;$ e $\;BCD\;$ com o ângulo $\;B\;$ comum e os ângulos $\;BHE\;$ e $\;CDB\;$ iguais. E, pelo menos, o ponto $\;H\;$ pode ser determinado por $\;HB.BC=BT^2.\;$
Começamos por aí.
É preciso determinar um dos pontos $\;D,\; E\;$ ou $\;F\;$ para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points $\;A, \;H,\;$ une circonférence et une droite $\;BC.\;$ Déterminer sur cette circonférence un point $\;E,\;$ tel qu'en le joignant aux deux points donnés $\;A,\; H,\;$ la corde $\;FG\;$ soit parallèle à la droite $\;BC.\;$ Soit le problème résolu et $\;FG\;$ parallèle à $\;BC.\;$



Consideremos o problema resolvido e $\;FG\;$ paralela a $\;BC.\;$ De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a $\;HA\;$ tirada por $\;F,\;$ que intersecta a circunferência dada em $\;L\;$ e traçamos a reta $\;LG\;$ que intersecta $\;HA\;$ em $\;M.\;$

Nestas condições, temos $\; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi, $
$\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\; $
e, em consequência,
$ \Delta [HGM] \sim \Delta [HEA],\;$ dos quais $\angle \hat{H}\; $ é ângulo comum. E é essa semelhança que nos permite escrever $$\frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 $$ que nos permite determinar sobre $\;HA\;$ o ponto $\;M,\;$ colinear de $\;G, \;L\;$ sendo
$\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )$




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné $\;M,\;$ mener une sécante telle que l'angle inscrit $\;L\hat{F}G\;$, qui correspond à la corde interseptée $\;GL,\;$ soit égale à un anglé donnée $\;A\hat{H}B.\;$



Por um ponto qualquer da circunferência dada, tiramos paralelas a $\;BH\;$ e a $\;MH\;$ ou seja inscrevemos na circunferência um ângulo de amplitude igual a $\; \angle B\hat{H}M\;$
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a $\; \angle B\hat{H}M,\;$ o problema de Castillon fica resolvido tirando por $\;M\;$ a tangente a ela que intersectará a circunferência inicialmente dada nos pontos $\;G, L\;$

Por esse ponto $\;G\;$, finalmente determinado, a paralela a $\;BC\;$ por ele tirada intersecta a circunferência inicial em $\;F.\;$
$\;D\;$ ficará determinado na circunferência pela reta $\;CF\;$ e
o ponto $\;E\;$ ficará determinado sobre a circunferência pela reta $\;DB\;$ ou pela reta $\;FA.\;$… $\blacksquare$

31.12.17

Problema de construção —análise e síntese (9)


De vez em quando vamos acrescentando problemas de construção euclidiana (régua e compasso) usando um outro dos métodos já apresentados seguindo vários autores que foram sendo referenciados. Hoje resolvemos um problema de quadrados a partir da análise das propriedades de quadrados, ângulos, … triângulos isósceles,….

Problema: Construir um quadrado de que é dado um segmento de comprimento igual à soma $\;d+l"\;$ dos comprimentos da diagonal e do lado.


F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, Problema 41.

Análise do problema:
Com o problema resolvido, teríamos um quadrado $\;[ABCD]\;$ sendo $\;AB=BC=CD=DA=l,\; AC=BD=d.\;$ Sabemos que as diagonais de um quadrado são perpendiculares se bissetam num ponto e bissectam os ângulos retos do quadrado. Cada uma das diagonais divide o quadrado em dois triângulos rectângulos isósceles. $\;ABC, \;CDA\;$ por $\;AC\;$ e $\;DAB, \; BCD\;$ por $\;DB.\;$
O que temos é um segmento de reta de comprimento $\;d+l = \overline{AC}+\overline{CD}.\;$ Tomada uma reta qualquer e sobre ela o segmento de reta de extremos $\;A\;$ e $\;E\;$ como uma extensão da diagonal $\;AC,\;$ o vértice $\;C\;$ do quadrado é o ponto que divide $\;AE = d+l\;$ em $\;AC=d\;$ e $\;CE=l.\;$
Chamemos $\;M\;$ ao ponto médio de $\;AE,\;$ podemos construir um triângulo retângulo isósceles de hipotenusa $\;AE\;$ e catetos $\;AF, \;EF\;$ sendo $\;F\;$ a intersecção da perpendicular a $\:AE\,$ tirada por $\;M\,$ com uma semicircunferência de diâmetro $\;AE\;$. Este triângulo isósceles é meio quadrado de diagonal $\;AE\;$ Sobre o cateto $\;AF\;$ deste triângulo $\;AEF,\;$ incidirá o vértice $\;D\;$ do quadrado que procuramos. Como $\;AE\;$ é a reta da diagonal $\;AC, \;\; CD \parallel EF \perp AF\;$


A construção (sintética, a seguir) é sugerida pelas relações desveladas na análise acima feita. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 5}.\;$



8 janeiro 2018, Criado com GeoGebra


Considerando as considerações acima, podemos apresentar em síntese, os passos da nossa construção bem justificados.

Para $\;\fbox{n= 1}:\;$ a figura apresentada ilustra os dados $\;A, \;E,\;AE= d+l$, para além do cursor $\;\fbox{n=1,..., 5}.\;$

Para $\;\fbox{n= 2}:\;$ acrescentamos

  • o ponto $\;M\;$ médio de $\;AE\;$ e a perpendicular a $\;AE\;$ tirada por $\;M\;$ — mediatriz — (recorrendo a $\;(A, \;AE). (E,\;EA)),\;$ por exemplo).
  • o ponto $\;F\;$ numa intersecção $\; \displaystyle (\perp_M AE) . (M,\;ME)\;$ e os catetos $\;EF, \;FA\;$ triângulo retângulo isósceles de hipotenusa $\;AE.\;$

Para $\;\fbox{n= 3}:\;$ acrescentamos a bissetriz do ângulo $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ que determina o vértice $\;D\;$ do quadrado na sua intersecção com $\;AF. \;$ Como $\;CD \parallel EF\;$ e uma paralela a $\;EF\;$ fará um ângulo da mesma amplitude de $\; \displaystyle A\hat{E}F =\frac{\pi}{4}\;$ sendo ângulo externo do triângulo determinado por estas últimas 3 retas e igual à soma dos ângulos internos a ele não adjacentes e que devem ser de iguais amplitudes —$\;\displaystyle \frac{\pi}{8}\;$ para que os lados opostos a cada um deles sejam iguais, ou seja $\; DC=CE\;$ já que $\;C \;$ é tal que $\;AE = AC+CD=d+l. \;$

Para $\;\fbox{n= 4}:\;$ acrescentam-se

  • o ponto $\;C\;$ como $\; (\parallel_D EF).AM\;$
  • as retas $\; \displaystyle (\perp_A AF)\;$ e $\; \displaystyle (\perp_C EF)\;$
  • o ponto $\;B\;$ como intersecção $\; \displaystyle (\perp_A AF) . (\perp_C EF)\;$
  • os segmentos de reta $\; AB, \;BC, \; CD, \;DA\;$ como lados do quadrado que procurámos.

Para $\;\fbox{n= 5}:\;$ realçamos o interior do quadrado $\;[ABCD].\;$      □