Mostrar mensagens com a etiqueta F.G.—M. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta F.G.—M. Mostrar todas as mensagens

15.1.18

Envolvente. Problema recorrrendo a lugar geométrico (20)


Notas prévias:

O lugar geométrico dos pontos a uma distância $\;r\;$ de um ponto $\;O\;$ dado é uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ e uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ é o lugar geométrico dos pontos a uma distância $\;r\;$ do ponto $\;O.\;$
A distância de um dado ponto O a uma reta a é igual ao comprimento do segmento da reta perpendicular tirada por $\;O\;$ a $\;a\;$ de extremos $\;O\;$ e $\;A,\;$ pé dessa perpendicular a $\;a;\;$ e, por isso, podemos dizer que sendo o
lugar geométrico dos pontos dos pés das perpendiculares a retas equidistantes de um ponto $\;O\;$ é uma circunferência ou mesmo que a circunferência é o lugar geométrico das retas equidistantes de $\;O\;$ tomando por cada reta o seu ponto de tangência ou dizendo que a circunferência é envolvente (que envolve ou é envolvida) das retas equidistantes do seu centro.


Problema: Para um dado ângulo $\;\angle B\hat{A}C, \;$ determinar a envolvente da base $\;BC\;$ de um triângulo $\;[BAC]\;$ cujo perímetro é constante.

F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 123. Quelle est l'envelope de la base BC d'un triangle BAC dont le périmètre est constant, et dont l'angle A est donné de grandeur et de position?

A seguir encontra-se uma ilustração dinâmica dos dados do enunciado deste problema, bem como dos auxiliares passos de uma construção em apoio da demonstração.
  1. Apresenta-se ao cimo da janela um segmento de reta de comprimento igual ao perímetro $\;2p\;$ constante de um triângulo $\;ABC\;$ partido em 3 segmentos, da esquerda para a direita, $\;AB, \;BC, \;CA.\;$ e também em duas partes iguais a $\;p,\;$ $\;AM, \;MA\;$.
    Logo abaixo na janela, temos um exemplar de triângulo com um ângulo $\;Â\;$ dado (no caso, de amplitude 46°) e lados com os comprimentos referidos acima ou seja com o perímetro constante considerado (no caso, 7).
    Considerámos, no segmento original, o ponto $\;B\;$ a tomar posições entre $\;A\;$ e $\;M,\;$ já que $\;AB < BC+CA\;$ (desigualdade triangular). Se deslocar $\;B\;$ pelas posições dos pontos de $\;AM,\;$ obtemos todos os representantes dos triângulos de perímetro 7 e com ãngulo 46° em $\;A.\;$
    Os lados $\;AB\;$ e $\;AC\;$ são segmentos das retas definidas por cada um dos pares de pontos $\;(A,\; B),\; (A, \;C).\;$ Já vimos que não há triângulo quando $\;B=A\;$ ou quando $\;B=M\;$


  2. 14 janeiro 2018, Criado com GeoGebra



  3. As posições extremas de $\;B:\; B=M\;$ e $\;B=A \;$ levam-nos a aos pontos de intersecção de $\;AB\;$ e $\;AC\;$ com a circunferência $(A, \;p)$ sendo $\;p=AM\;$ semiperímetro de triângulos com um ângulo de 46°
  4. $\;AD=AE=p,\;$ ou seja $\;ADE\;$ é um triângulo isósceles de base $\;DE.\;$ com ângulo $\;Â\;$ dado (46°)
    $\;AD+AE = 2p = AB+BC+CA\;$
  5. Consideremos a circunferência de centro em $\;H\;$ tangente em $\;D\;$ e $\;E\;$ às retas $\;AB\;$ e $\;AC\;$ respetivamente:
    • $\;DH \perp AB, \;HE \perp AC,\;$
    • Por ser $\; DH=HE, \; \;\; H\;$ está na bissetriz do ângulo $\;Â.\;$ Assim, esta circunferência $\;(H, HE)\;$ é uma ex-inscrita de qualquer dos triângulos $\;ABC\;$ e portanto tangente a $\;BC.\;$
  6. As bases $\;BC\;$ são tangentes ao arco aberto da circunferência $\;(H, \;HT):\; ]\widehat{DTE}[ \;$ a vermelho (os extremos a castanho $\;D, \;E\;$ não são pontos da envolvente dos segmentos $\;BC\;$ considerados).