Mostrar mensagens com a etiqueta cordas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta cordas. Mostrar todas as mensagens

4.8.17

Uma superfície limitada por três arcos circulares equivalente a um quadrado.

Uma superfície limitada por três arcos circulares equivalente a um quadrado.
Uma superfície de gumes circulares equivalente a um quadrado

Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um quadrado a uma superfície limitada por arcos de circunferências.
Tomamos um quadrado $\;ABCD\;$ e uma das diagonais, por exemplo, $\;BD\;$ e consideremos o arco $\;BD\;$ de centro em $\;A\;$ e os arcos $\;BGA\;$ - de diâmetro $\;AB,\;$ centro $\;E\;$ - e $\;AGD\;$ - de igual diâmetro $\;DA,\;$ e centro em $\;F\;$. Estes três arcos circulares limitam uma superfície (a vermelho na figura abaixo)
O enunciado do problema desta entrada é:
Demonstrar que a superfície a vermelho na figura é igual em área a um quadrado de lado $\;\displaystyle\frac{AB}{2}\;$ (um quarto do quadrado $\;ABCD)\;$.

Nota Daqui para a frente, por exemplo, estamos a usar $\;E, \widehat{AGB}\;$ para designar o semicírculo de diâmetro $\;AB\;$ ou $\;(A, \hat{BD})\;$ o arco de centro $\;A\;$ de extremos $\;B, \;D\;$ (quarto de circunferência na figura). Para além da superfície que estudamos, apresentam-se inicialmente retas, segmentos e arcos que ajuda a compreender a construção e permitem determinar a sua área da superfície em estudo ou a compará-la com outras áreas. Partimos dos seguintes dados:
  • $\;ABCD\;$ são vértices de um quadrado;
  • As diagonais $\;BD\;$ e $\;AC\;$ são perpendiculares e bissectam-se.
  • O arco $\;\hat{BD}\;$ é um quarto da circunferência de raio igual ao lado do quadrado $\;ABCD\;$. O quarto do círculo correspondente tem área $$\; \frac{\pi\times AB^2}{4}\;$$
  • Os arcos $\;\widehat{AGB}\;$ e $\;\widehat{AGD}\;$ das circunferências de diâmetros $\;AB\;$ e $\;AD\;$ são semicircunferências iguais. A área de cada um doss semicírculos correspondentes às semicircunferências é $$\; \pi \times \frac{\left(\frac{ AB}{2}\right)^2}{2} = \frac{\pi \times AB^2}{8},\;$$ metade da área do quarto de círculo de raio $\;AB.\;$

3 agosto 2017, Criado com GeoGebra

  • Por isso $$\mbox{Área de} (E,\widehat{AGD})+\mbox{Área de} (F,\widehat{AGB})=\mbox{Área de} (A,\widehat{AB}),$$ $$(A,\widehat{AB})\setminus(F,\widehat{AGB})= (E, \widehat{AGD}) $$ Também sabemos que $\; (F, \widehat{AG}) = (F,\widehat{GD})= (E, \widehat{AG}) = (E, \widehat{GB})$. Basta agora olhar para $\;(F,\widehat{AGA});$ no lugar de $\;(E, \widehat{BGB})\;$ para vermos que o semicírculo de centro em $\;E\;$ e raio $\; \displaystyle \frac{AB}{2}= AE=EB=EG\;$ é assim composto: $$\;(E, \widehat{GAG}) \cup \;(E, \widehat{BGB}) \cup \Delta[BGA] \;$$ de conjuntos disjuntos igual à metade do quarto de círculo que contém toda a superfície vermelha acrescentada de um triângulo de base $\;AB\;$ e respectiva altura $\;EG\;$ cuja área é $$\frac{AB \times EG}{2} = \frac{\left(AB \times \displaystyle \frac{AB}{2}\right)}{2} = \left(\frac{AB}{2}\right)^2$$ de um quadrado de lado igual a metade do lado do quadrado $\;ABCD.\;$
    • Usando o botão [mover peças], verá que a nossa superfície vermelha é equivalente à parte do círculo $\;(A, AB)\;$ entre a corda $\;[AB]\;$ e o arco $\;\widehat{AB}\;$ e que esta é igual em área ao quadrado de vértices $\;A, G\;$ opostos que também se pode ver quando a animação é concluída.


      Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
      Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

21.7.14

Resolver problema de construção usando análise e síntese


Problema: Por um dos pontos de interseção de duas circunferências secantes, conduzir uma reta que determine nas duas circunferências um segmento de comprimento dado.
Vilela, António Lôbo. Métodos GeométricosMétodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
A publicação da resolução deste problema tornou-se necessária como parte da construção da resolução de um outro problema que entendemos dever publicar, como ilustração do método do problema contrário proposto no mesmo livro.
Pode seguir os passos da análise do problema fazendo variar os valores de $\;n\;$ entre 1 e 3 no cursor $\;\fbox{n}$. Para $\;n=4\;$ concluirá a primeira solução. Os valores $\;5\leq n\leq 8$ mostrarão a construção da segunda solução (para $\;P\;$, claro)
  1. Os dados deste problema são: um comprimento $\;s\;$, duas circunferências $\;(C)\;, \;(C')\;$ secantes e um ponto $\;P\;$ da interseção $\;(C).(C')\;$
  2. Supor o problema resolvido é considerar encontrado uma reta a passar por $\;P\;$ a cortar $\;(C)\;$ em $\;A\;$ e $\;(C')\;$ em $\;A'\;$ (para além de $\;P\;$), de tal modo que $\;AA'=s.\;$ Como podemos encontrar $\;A, \;A'$ ?
    Sabemos que $\;AA' = AP +PA', \;$ é soma de duas cordas, uma de cada circunferência.
  3. Os pontos médios $\;M\;$ e $\;M'\;$ respetivamente de $\;AP\;$ e $\;PA'\;$ são tais que
    • $\;A\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M\;$ e $\;A'\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M'\;$<\li>
    • $\;MM' =MP+PM'= \displaystyle \frac{1}{2}(AP+PA')=\frac{1}{2}(AA')= \frac{s}{2}\;$
    • $\; CM \perp AP \wedge C'M' \perp PA' \;$ e, por isso, $\;CM \parallel C'M'\;$ ou $\;[MCC'M']\;$ é um trapézio retângulo.

    Isto quer dizer que bastará determinar o ponto $\;D\;$ tal que     $\;CD \perp C'D \wedge C'D =MM'=\displaystyle \frac{s}{2}\;$
    que é o mesmo que dizer que $\;D\;$ é simultaneamente ponto da circunferência de diâmetro $\;CC'\;$ e da circunferência de centro $\;C'\;$ e raio $\;\displaystyle \frac{s}{2}\;$
  4. Com os dados do problema podemos determinar $\;D\;$. Como a reta $\;CD\;$ (ou $\;CM\;$ é perpendicular a $\;AA'\;$ e $\;C'D\;$ também é perpendicular a $\;CD,\;$ para obter a reta $\;AA'\;$ (ou $\;MM'\;$) basta tirar por $\;P\;$ a paralela a $\;C'D\;$

  5. © geometrias, 20 de Julho de 2014, Criado com GeoGebra


  6. Para a segunda solução, que existe no caso da nossa figura, começamos por determinar $\;D'\;$ como intersecção da circunferência centrada em $\;C\;$ e raio $\; \displaystyle \frac{s}{2}\;$ com a circunferência de diâmetro $\;CC'\;$ de modo que o triângulo $\;[CC'D']\;$ seja retângulo em $\;D'\;$
  7. A paralela a $\;CD'\;$ tirada por $\;P\;$ é a reta que procuramos. A reta $\;C'D'\;$ interseta esta paralela em $\;N'\;$ e a paralela a $\;C'D'\;$ tirada por $\;C\;$ interseta-a em $\;N.$
  8. A paralela a $\;CD'\;$ tirada por $\;P\;$ determina duas cordas $\;BP\;$ em $\;(C)\;$ e $\;PB'\;$ em $\;(C')\;$ das quais $\;N\;$ e $\;N'\;$ são pontos médios já que $\;CN \perp BB'\;$ e $\;C'D' \perp PB'$
  9. Como $\; \displaystyle \frac{s}{2}=CD' = NN',\;$ passando por $\;P, \;$ $\; BB' = BP+PB'= 2(NP+PN')=2NN'=\displaystyle 2\frac{s}{2}=s$     □
Nota sobre as condições de existência de soluções.
A existência de soluções depende de $\;D\;$. Vimos que $\;CD'=MM'=\displaystyle \frac{s}{2}\;$ ou $\;C'D =NN'=\displaystyle \frac{s}{2}\;$ são cordas da circunferência de diâmetro $\;CC'\;$ e, por isso, $\;CD'= C'D = \displaystyle \frac{s}{2} \leq CC'\;$. Assim só há soluções quando $\;s\leq 2CC'.\;$
Para $\;s= 2CC'\;$ (ou quando $\;s\;$ atinge o seu valor máximo), $\;AA'\;$ e $\;BB'\;$ são paralelas de $\;CC'\;$ tiradas por $\;P\;$, logo $\;AA'=BB'\;$ o que quer dizer que nesse caso há uma só solução.
Se $\;s <2CC', \;$ há duas direções para as secantes por $\;P\;$ e comprimento $\;s:\;$ $\;\;s=AA', \; AA'\parallel C'D\;$ e $\;s=BB', \; BB'\parallel CD'\;$ e, em consequência , pode haver duas soluções, no caso de cada uma das paralelas tiradas por $\;P\;$ a $\;C'D\;$ e a $\;CD'\;$ cortar as duas circunferências $\;(C), \; (C')\;$. No limite, estas direções podem ser a das tangentes $\;t, \; t'\;$ tiradas por $\;P\;$ a $\;(C)\;$ e $\;(C')\;$. Se conduzirmos por $\;C'\;$ paralelas a essas tangentes, elas determinam cordas, chamemos-lhe $\;u, \; u'\;$ na circunferência de diâmetro $\;CC'\;$ . Verifica-se que há uma só solução se $\; 2\times mín \{u,\;u'\} < s < 2\times máx \{u,\; u'\}\;$ e duas soluções quando $\; 2\times máx \{u,\; u'\} < s < CC'. $

3.4.14

Usando lugares geométricos para resolver problemas de construção (17a)

Problema: Determinar um ponto a partir do qual se vêem segundo ângulos iguais dois segmentos $\;AB\;$ e $\;BC\;$ de uma dada reta $\;a$

A construção abaixo ilustra a resolução do problema proposto
  1. Dados(a azul): uma reta $\;a\;$ e três pontos $\;A, \;B, \;C\;$ sobre ela.
  2. Tomemos um ângulo $\;\alpha = C\hat{A}D\;$. Os pontos $\;P\;$ a partir dos quais se traçam retas $\;PA\;$ para $\;A\;$ e $\;PB\;$ para $\;B\;$ sendo $\;A\hat{P}B =\alpha\;$ estão sobre dois arcos de circunferências congruentes dos quais $\;AB\;$ é uma corda comum (5º lugar geométrico da lista).

    © geometrias, 2 de Abril de 2014, Criado com GeoGebra


  3. Do mesmo modo se determina o lugar geométrico dos pontos $\;P\;$ dos pontos tais que $\;B\hat{P}C=\alpha\;$.
  4. No caso da nossa construção, para o $\;alpha\;$ inicialmente considerado, há dois pontos $\;H, \;H'\;$ que satisfazem as condições do problema; são as interseções dos lugares geométricos (5º da lista) relativos a $\;\alpha\;$ e a $\;AB\;$ um deles e a $\;BC\;$ o outro.
  5. Claro que o segmento $\;AB\;$ e $\;BC\;$ podem ser vistos segundo ângulos iguais de outra amplitude.

Podemos variar o ângulo $\;\alpha\;$ e as posições de $\;A\;$, $\;B\;$ e $\;C\;$