Mostrar mensagens com a etiqueta problema de construção. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta problema de construção. Mostrar todas as mensagens

16.7.14

Resolver problema de construção usando o problema contrário (2)


Enquanto íamos resolvendo problemas de construção como ilustrações de métodos de demonstração de teoremas de existência na geometria euclidiana, a partir de referências várias (Birkhoff, Eves, Cluzel, Vissio, Puig Adam, etc) António Aurélio foi sempre referindo manuais escolares do seu tempo de escola. Mais recentemente, referia a existência de um título - Métodos Geométricos - e um autor A. Nicodemos. O livro (ou livros) de Nicodemos devem estar guardados na biblioteca da Escola José Estêvão. Mas depois de verificarmos a sua existência no catálogo da Biblioteca Nacional, procurámos, encontrámos e apalpámos dois dos livros das memórias de Aurélio, disponíveis na Biblioteca do Departamento de Matemática da FCT da Universidade de Coimbra, para o que contámos com a ajuda de Jaime Carvalho e Silva.
Um deles é o Compêndio de Geometria de A. Nicodemos, J. Calado, referido na vinheta anterior (de 13/07/2014). O outro resolve o problema do título em memória. Chama-se Métodos Geométricos - Resumo e exercícios resolvidos de António Lôbo Vilela, publicado em 1939, e depósito na Livraria Sá da Costa. Lisboa. Ficamos a saber que Antónoio Lôbo Vilela publicara, antes deste, um volume sobre Métodos da Matemática. Da nota prévia a este volume, retirámos:
"Com a publicação do nosso volume sobre Métodos de Matemática com o intuito de apontar a orientação que nos parece mais conveniente ao ensino da matemática, por ser a única que a pode tornar compreensiva e lhe permite exercer a sua ação educativa. Pretendemos ainda mostrar que a lógica devia ser integrada nos programas de matemática, separando-a da filosofia a que arbitrariamente anda ligada e a deixa murchar, por falta de aplicação e de seiva. A amplitude e o objectivo desse trabalho não nos permitiram descer a certas minúcias de aplicação da metodologia da matemática que têm particular valor didáctico. Por isso nos decidimos agora a publicar este pequeno volume de iniciação,limitando o assunto aos Métodos Geométricos, única parte da metodologia da matemática que os actuais programas exigem, e dando-lhe um cunho mais acentuadamente prático(…)"
Deste manual escolar de António Lôbo Vilela, a propósito do método do problema inverso, citamos
Assim, quando se pretende construir uma figura que satisfaça a certas condições, entre elas a de ser inscrita, por exemplo, numa figura dada, é possível, em geral, desprezando esta condição de inscritibilidade, construir uma figura que satisfaça às restantes condições. Se for mais simples circunscrever a esta figura a figura dada ou uma figura semelhante a ela, há conveniência em empregar o método do problema inverso.
e escolhemos o primeiro dos exemplos que ALV escolheu para ilustrar o recurso ao método do problema inverso:
Problema:
Inscrever, numa circunferência de raio dado, um triângulo isósceles cuja base seja igual à altura
  1. No caso é mais fácil resolver o problema contrário do problema proposto. Assim, começamos por desenhar um qualquer triângulo isósceles de altura igual à base e determinar a circunferência a ele circunscrita (que é o mesmo que dizer em que o triângulo está inscrito)
  2. Para isso, tomamos um segmento qualquer $\;DE\;$ para base do triângulo isósceles.
  3. Para ser isósceles, a reta da altura é a mediatriz da base $\;DE\;$ . Assim se determina o terceiro vértice do triângulos isósceles - circunferência de centro no ponto médio de $\;DE\;$ e raio $\;DE\;$ interseta a mediatriz em dois pontos, qualquer dos dois pode ser $\;F\;$
  4. O circuncentro $\;O\;$ de $\;[DEF]\;$ é o ponto de interseção das mediatrizes dos lados do triângulo e a circunferência a ele circunscrita tem centro $\;O\;$ e raio $\;OD\;$

  5. © geometrias, 16 de Julho de 2014, Criado com GeoGebra


  6. Esta circunferência de centro $\;O\;$ e a passar por $\;D,\;E,\;F\;$ é homotética de qualquer outra circunferência. Desenhemos a circunferência $\;(O,\;r)\;$
  7. Há uma homotetia de centro $\;O\;$ e razão $\;\displaystyle k=\frac{r}{OD}\;$ que relaciona as duas circunferências e para a qual
    $$\begin{matrix} &\;{\cal{H}}(O, k)\;&&\\ (O,\; OD) & \longrightarrow & (O, \; r)&\\ D & \longmapsto & A:& \;\;\;OA=r=k.OD\\ E & \longmapsto & B.& \;\;\;OB=r=k.OE\\ F & \longmapsto & C:& \;\;\;OC=r=k.OF\\ DE & \longrightarrow & AB :&\;\;\; AB=k.DE\\ EF & \longrightarrow & BC :&\;\;\; BC=k.EF\\ DF & \longrightarrow & AC : &\;\;\; AC=k.DF \\ \end{matrix} $$ de onde se conclui que, por ser $\;DEF\;$ um triângulo isósceles de base igual à altura a ela relativa, $\;ABC\;$ é um triângulo isósceles de base igual à altura a ela relativa inscrito na circunferência $\;(O, \;r)\;$ satisfazendo as condições do problema proposto.

13.7.14

Resolver problemas de construção usando o método do problema contrário


Em todas as vinhetas publicadas nos últimos meses, apresentamos exemplos de resolução de problemas de construção também como ilustrações de formas de raciocínio e demonstração, métodos muito usados em livros de geometria euclidiana. Em Portugal, raros são os livros escolares que se referem às demonstrações e aos métodos de demonstração com o detalhe das apresentações do passado em que se definiam e classificavam métodos, cada um acompanhado de exemplo e descrição passo a passo o processo de decisão e construção. Pode ser útil a professores e estudantes esta lembrança de apresentação de métodos (?) ilustrados por resoluções de problemas de construção geométrica. Dos livros portugueses do século passado, referimos o Compêndio de Geometria de A. Nicodemos, J. Calado, terceira edição de 1944 pela Livraria Popular Francisco Franco de Lisboa. Começamos pela transcrição do "PROGRAMA OFICIAL (Decreto nº 27:085)" da época.
Breves noções dos métodos geométricos:
  • métodos gerais - método analítico, método sintético e de redução ao absurdo;
  • métodos particulares - método dos lugares geométricos e método de transformação
que é elucidativa. De qualquer modo, citando o livro escolhido, sabemos que "a natureza do problema indicará qual o método que mais convém à sua resolução", sendo que pode ser necessário o recurso a mais que um método para a resolução de um problema de construção.
Nesse livro introduz-se um "Método do problema contrário", definindo "problema contrário ou inverso de um dado problema" como "aquele que é estabelecido tomando os dados do problema proposto para incógnitas e as incógnitas para dados." E exemplifica com os seguintes exemplos
O problema contrário do problema:
Inscrever um quadrilátero, semelhante a um quadrilátero dado, numa semicircunferência, e de modo que dois dos vértices do quadrilátero existam no diâmetro da semicircunferência.
é
Circunscrever a um quadrilátero dado uma semicircunferência de modo que o diâmetro desta semicircunferência contenha um dos lados do quadrilátero.
(…) Em vez de resolver directamente o problema proposto convém, muitas vezes, resolver primeiro o seu problema contrário, pois a solução deste problema permite determinar a do problema proposto.
Claro que já usámos este método sem lhe fazermos qualquer referência. Por exemplo, a entrada
Resolver um problema de construção usando uma rotação e uma homotetia ,  de 10.5.14, refere-se ao problema
Inscrever um quadrilátero com determinada forma num semicírculo dado, em que um lado específico do quadrilátero inscrito esteja no diâmetro do semicírculo,
como ilustração do método das transformações. No entanto bastará olhar para a resolução para reconhecer que, para inscrevermos o quadrilátero semelhante a um dado no semicírculo dado, começámos por circunscrever o quadrilátero dado numa semicircunferência, antes de usarmos o método das transformações.

O problema que apresentam no livro escolar como ilustração do método do problema contrário é em tudo análogo ao já publicado. Transcrevemos e ilustramos de tal modo que pode resolver, usando a janela de comandos [input], ou pode ver a resolução, passo a passo, fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$
Problema:
Inscrever numa semicircunferência dada um losango semelhante a um losango dado e de modo que dois dos seus vértices consecutivos estejam sobre o diâmetro da circunferência.
Em vez de resolvermos este problema, resolvamos o problema seguinte:
Circunscrever a um losango, semelhante a um losango dado, uma semicircunferência de modo que o seu diâmetro contenha um dos lados do losango.
O problema que acabamos de formular é o problema contrário do problema proposto.
Resolução (problema contrário):

Seja $\;[ABCD]\;$ o losango e $\;AB\;$ o lado existente sobre o diâmetro
Como a semicircunferência deverá passar pelos vértices $\;C, \;D\;$, o seu centro existirá sobre a mediatriz de $\;\overline{CD}.\;$ Por outro lado, como $\;\overline{AB}\;$ está localizado sobre o diâmetro, o centro da circunferência existirá sobre a recta a que pertence $\;\overline{AB}.\;$ Logo o centro da semicircunferência é o ponto $\;O\;$ - intersecção das duas rectas referidas.

© geometrias, 12 de Julho de 2014, Criado com GeoGebra


Resolução (problema proposto):

Para obtermos agora a solução do problema proposto, bastará tomar o ponto $\;O\;$ como centro de homotetia e transformar homoteticamente a figura obtida, tomando para razão de homotetia $\;\displaystyle \frac{r}{r'},\;$ sendo $\;r\;$ o raio da circunferência dada e $\;r'\;$ o raio da circunferência a que se refere o problema contrário.
Descrevamos então com centro em $\;O\;$ a circunferência de raio dado e determinemos sobre ela os pontos $\;A',\;B',\;C',\;D', \;$ que são homotéticos, respectivamente, de $\;A,\;B,\;C, \;D\;$ relativamente ao ponto $\;O\;$ (duas circunferências concêntricas são homotéticas relativamente ao seu centro).
O quadrilátero $\;[A'B'C'D']\;$ é a solução do problema proposto.

8.7.14

Resolver problema de construção usando análise e síntese (8)


Problema:     Construir um paralelogramo sendo dados os comprimentos de um lado e das duas diagonais.
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Com o problema resolvido, teríamos um paralelogramo $\;[ABCD]\;$ sendo $\;AB=a,\; AC=d_1, \; BC=d_2.\;$ Sabemos que as diagonais de um paralelogramo se bissetam num ponto, chamemos-lhe $\;M.\;$
$\;[ABM]\;$ é um triângulo de lados $\;AB=a, \; \displaystyle AM=\frac{d_1}{2}, \;BM=\frac{d_2}{2}\;$ e o paralelogramo é composto de 2 pares de triângulos iguais.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise do problema resolvido. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 8 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que, nas condições do problema, podemos construir um triângulo usando os comprimentos dados e que, a partir dele, podemos construir o paralelogramo que procuramos.
  2. Comecemos por tomar para $\;A\;$ um ponto qualquer do plano e para ponto $\;B\;$ um ponto qualquer da circunferência $\;(A,\;a), \;$ à distância $\;a\;$ de $\;A\;$.
  3. As diagonais do paralelogramo bissetam-se num ponto $\;M,\;$ escolhemos um dos pontos da interseção $\;\left(A,\;\displaystyle \frac{d_1}{2}\right). \left(B, \displaystyle\frac{d_2}{2}\right).\;$
  4. A construção do triângulo $\;[ABM]\;$ é decisiva para a resolução do problema, ou mais simplesmente, fundamental é determinar o ponto $\;M.\;$
  5. $C, \;D\;$ determinam-se assim: $\left(M,\;MA\right). MA =\{A,\; C\}$
    $\left(B, \;BM\right).BM=\{B, \;D\}.\;$ $\;D\;$ pode ser obtido como interseção das retas: paralela a $\;AB\;$ tirada por $\;C\;$ e paralela a $\;BC\;$ tirada por $\;A$.
  6. $\;[ABCD]\;$ é o paralelogramo que procuramos.     □
Para que o nosso problema tenha soluções é necessário e suficiente que se possa construir o triângulo $\;[ABM]\;$ ou que $$ AB < BM+MA \;\;\; \wedge \;\;\; BM < MA+ AB \;\;\; \wedge \;\;\; MA< BM+AB $$ $$a<\frac{d_1+d_2}{2} \;\;\; \wedge \;\;\; \frac{d_1}{2} < a+ \frac{d_2}{2} \;\;\;\wedge \;\;\;\frac{d_2}{2}< a+\frac{d_1}{2}\;$$ que é o mesmo que $$a<\frac{1}{2}(d_1+d_2) \;\;\; \wedge \;\;\; \frac{1}{2}(d_1-d_2) < a \;\;\; \wedge \;\;\; \frac{1}{2} (d_2-d_1) < a $$ ou $$ \frac{1}{2}\left| \;d_1-d_2\; \right| \; < \;a\; < \;\frac{1}{2}(d_1+d_2) $$.

5.7.14

Resolver um problema de construção usando análise e síntese (7)


Problema:
Determinar um ponto $\;P\;$ sobre uma reta que contém um diâmetro $\;AB\;$ de uma dada circunferência $\;(O)\;$ tal que, sendo $\;T\;$ o ponto de tangência da tangente à circunferência tirada por $\;P, \;$ $\;PT = 2PA.\;$
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Com o problema resolvido, teríamos uma circunferência $\;(O)\;$, um ponto $\;P\;$ no exterior de $\;(O)\;$ sobre um diâmetro $\;AB\;$, uma tangente num ponto $\;T\;$ da circunferência a passar por $\;P\;$, sendo $\;PT=2PA.\;$
Sabemos também que $\;PA \times PB =PT^2\;$ (potência de um ponto $\;P\;$ relativamente à circunferência $\;(O).\;$)
Assim, de $\;PT^2 =4PA^2= PA\times PB$ se tira $\;4PA=PB=BA+PA\;$ e, em consequência, $\;3PA=AB\;$ ou $\; \displaystyle PA=\frac{AB}{3}.\;$

A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise do problema resolvido. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 5 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que, nas condições do problema, $$PT=2PA \Longrightarrow \displaystyle PA=\frac{AB}{3}.\;$$
  2. Seguindo o que nos é sugerido, começamos por dividir $\;AB\;$ em três partes iguais.
  3. E tomamos para ponto $\;P\;$ um dos pontos de interseção da circunferência $\,\left(A, \;\displaystyle \frac{AB}{3}\right).\;$ com a reta $\;AB\;$, isto é $\;P : 3PA =AB.\;$
  4. Determinamos os pontos $\;T\;$ e $\;U\;$ de tangência das tangentes a $\;(O)\;$ que passam por $\;P\;\;\;\;$
    Será que $\;3PA=AB \Longrightarrow 2PA=PT\;?\;$. Como $\;BP=BA+AP\;$ e, por construção, $\;3PA=AB\;$, $\;BP =4PA\;$
    Por ser $\;PA\times PB = PT^2,\;$ temos $\;4PA^2=PT^2,\;$ e, em consequência $\;2PA=PT\;\;\;\;$ □

22.6.14

Resolver problema de construção, usando análise e síntese (2)


Problema:     Traçar num dado triângulo um segmento paralelo à base de tal forma que, se a partir dos seus extremos se tirarem segmentos paralelos aos lados até à base, a sua soma seja igual ao primeiro segmento.
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008
São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge DE= DF+EG,\;$ sendo $\;F, \;G\;$ pontos de $\;BC\;$ e $\;EG \parallel DB\;$ e $\;DF \parallel EC. \;$
Considerando que, para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores $\;1,\;2\;$de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$
  1. No problema resolvido temos os pontos dados $\;A, \;B, \;C\;$ e também os pontos $\;D\;$ sobre $\;AB\;$ e $\;E\;$ sobre $\;AC\;$, de tal forma que $\;DE \parallel BC \wedge DE= DF+EG,\;$ sendo $\;F, \;G\;$ pontos de $\;BC\;$ e $\;EG \parallel DB\;$ e $\;DF \parallel EC. \;$
  2. $\;[DBGE]\;$ e $\;[DFCE]\;$ são paralelogramos, logo
    $\; DE= EG+DF = DB+EC \;$

  3. A construção (sintética, a seguir) está ilustrada para os valores $\;3,\; 4\;$ de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$

    © geometrias, 22 de Junho de 2014, Criado com GeoGebra



    Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta $\;DE\;$ .
  4. Começamos por traçar as bissetrizes dos ângulos $\;A\hat{B}C\;$ e $\;B\hat{C}A\;$ e designemos por $\;H\;$ o ponto em que elas se encontram (aliás, este ponto é o incentro do triângulo $\;[ABC]\;$, comum às suas três bissetrizes e equidistante dos seus três lados).
    Por $\;H\;$ tiramos a paralela a $\;BC\;$ que interseta os lados $\;AB\;$ e $\;AC\;$ respetivamente em $\;D\;$ e em $\;E\;$
  5. Como $\;DE \parallel BC, \;\; D\hat{H}B =H\hat{B}F= D\hat{B}H\;$ e, em consequência, $\;DB=DH. \;$
    Do mesmo modo, $\;E\hat{H}C= H\hat{C}G = E\hat{C}H \;$ e, em consequência, $\;EC=EH\;$ e
    DE= DH+HE =DB+EC
    Finalmente, já que $\;B, \;E\;$ e $\;D, \;C\;$ são vértices de paralelogramos, então $\;EG=DB, \;DF=EC \;$ e, em consequência, $\;DE= DF+EG.\;\;\;\; $ □
Completam a ilustração, vários elementos que relacionam este problema de construção com o da anterior entrada. Fica assim apresentada uma nova resolução em que $\;H\;$ é olhado como o pé da bissetriz de $\;\hat{A}\;$ no triângulo $\;[ADE].\;$

12.6.14

Resolver problema de construção, usando composta de rotações (e meia volta)


Problema:    
O tesouro enterrado
Um velho pergaminho, que descrevia o local onde piratas enterraram um tesouro numa ilha deserta, dava as seguintes instruções:
Na ilha só há duas árvores, $\;A\;$ e $\;B\;$, e os restos de uma forca.
Comece na forca e conte os passos necessários para ir, em linha recta, até à árvore $\;A\;$. Quando chegar à árvore, rode $\;90^o \;$ para a esquerda e avance o mesmo número de passos. No ponto em que parou, coloque um marco no chão.
Volte para a forca e vá em linha recta, contando os seus passos, até à árvore $\;B$. Quando chegar à árvore, rode $\;90^o\;$ para a direita e avance o mesmo número de passos, colocando outro marco no chão, no ponto em que acabar.
Cave no ponto que fica a meio caminho entre os dois marcos e encontrará o tesouro.
Um jovem aventureiro que encontrou o pergaminho com estas instruções, fretou um navio e viajou para a ilha. Não teve dificuldade em encontrar as duas árvores mas, para seu grande desgosto, a forca tinha desaparecido e o tempo tinha apagado todos os vestígios que pudessem indicar o lugar onde ficava.
Fractal music, hipercards and more, de Martin Gardner

Proposto na brochura Trigonometria e Números Complexos: matemática - 12º ano de escolaridade. Maria Cristina Loureiro... DES. Lisboa:2000 (pp. 65/66), com uma resolução usando números complexos.
Mariana Sacchetti lembrou-se deste problema que tem utilizado na lecionação dos complexos, como um exemplo de problema que poderia ser resolvido usando transformações geométricas.
É o que vamos fazer, considerando que resolver o problema é encontrar o tesouro sem termos a exata localização de vestígios da forca.

A construção a seguir ilustra a resolução do problema, no caso mostrar que, qualquer que seja a posição da forca, seguir as instruções do pergaminho, conduz a uma única posição do tesouro. Com recurso exclusivo a propriedades das transformações geométricas.
  1. São dados os pontos $\;A\;$ e $\;B\;$ de localização das árvores
  2. Conhecida a localização da forca, designemo-la por $\,F\;$, seguir as instruções seria percorrer $\;FA\;$, rodar sobre os calcanhares $\;90^o\;$ para a esquerda e fazer um percurso de comprimento gual a $\;FA\;$, local onde se coloca um marco, designemo-lo por $\;M\;$: $$\begin{matrix} &{\cal{R}} (A, \;-90^o)&&\\ F&\longmapsto&M&\\ &&&\;\;\; \mbox{e, do mesmo modo, para o outro marco,} \;N \\ &{\cal{R}} (B, \;+90^o)&&\\ F&\longmapsto&N&\\ \end{matrix}$$

    © geometrias, 10 de Junho de 2014, Criado com GeoGebra


    Clique no botão $\;\fbox{1}\;$ para seguir as instruções do pergaminho para uma localização da forca.

  3. Não conhecendo a posição exata de $\;F\;$ tomamos um ponto qualquer, $\;F_1$, do chão da ilha para localização da forca. Designando por $\;M_1\;$ e $\;N_1\;$ as posições dos marcos a que chegamos, seguindo as instruções do pergaminho. Se $\;F_1\;$ fosse a localização exata da forca, no ponto médio $\;O\;$ de $\;M_1N_1\;$ valeria a pena cavar porque estaríamos a desenterrar o tesouro.
    É altura de fazer variar a posição de $\;F_1\;$ para observar o comportamento de $\;O\;$
  4. Pela rotação de $\;-90^0\;$ em torno de $\;A\;$, $\;M_1\;$ é a imagem de $\;F_1\;$ e, em consequência, $\;F_1$ é imagem de $\;M_1\;$ pela rotação de $\;+90^0\;$ em torno de $\;A\;$. Podemos escrever: $$\begin{matrix} &{\cal{R}}(A, \;+90^o)&&{\cal{R}}(B, \;+90^o)&\\ M_1&\mapsto & F_1 & \mapsto & N_1 \\ \end{matrix}$$ Ora, a composta de duas rotações $\;{\cal{R}}(B, \;+90^o)\circ {\cal{R}}(A, \;+90^o)\;$ é uma rotação:
    • o ângulo de rotação da composta é a soma dos ângulos das componentes, no caso $\;+90^o + 90^o =180^o$
    • o centro da rotação composta de rotações é um ponto equidistante de qualquer par de elementos relacionados pela composta, no caso $\;O\;$ : $\;OM_1 = ON_1$.
      De um modo geral, o centro da rotação composta determina-se como ponto de encontro das mediatrizes de dois pares de pontos por ela relacionados.
    Assim, se vê que as posições dos marcos $\;M\;$ e $\;N\;$ obtidas, para qualquer posição da forca $\;F\;$ de acordo com as instruções do pergaminho, estão relacionadas por uma transformação de meia volta. E o centro de uma rotação de meia volta é invariante, não dependendo da posição da forca.
O botão $\;\fbox{2}\;$ parte de outra localização da forca. Claro que bastará fazer variar uma posição de $\;F\;$.

1.6.14

Resolver problema de construção, usando meias voltas e translações


Problema:     São dados cinco pontos $\;A, \;B, \;C, \;D, \;E$. Estes pontos são os pontos médios dos lados de um pentágono $\;PQRST\;$ desconhecido. Reconstruir o pentágono.
Este problema está referido no livro Simetrias e Transformações Geométricas de Eduardo Veloso (p.15) e já aqui foi citado, bem como o artigo Cinco pontos, um problema e cinco resoluções, publicado no número 79 da revista Educação e Matemática de Setembro/Outubro de 2004. Recomendamos a leitura do artigo que conta uma história e apresenta 5 resoluções. Na circunstância, chamamos a atenção para a resolução usando transformações de Maria Dedò.
O enunciado é o que José Paulo Viana propõe numa mensagem a Eduardo Veloso.
A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas. Clicando nos sucessivos botões 2, 3, ... acompanha os passos da resolução/demonstração(?).
  1. Estão dados os pontos $\;A, \;B, \;C, \;D, \;E$ médios dos lados do pentágono de vértices $\;P, \;Q, \;R,\;S,\;T\;$ cujas posições desconhecemos e queremos construir.
  2. Consideremos $\;A\;$ ponto médio de $\;PQ\;$, $\;B\;$ ponto médio de $\;QR\;$, $\;C\;$ ponto médio de $\;RS\;$, $\;D\;$ ponto médio de $\;ST\;$, $\;E\;$ ponto médio de $\;TP\;$.
    Sejam quais forem as posições de $\;P\;$ e de $\;Q\;$, sabemos que estão relacionados por uma transformação de meia volta centrada em $\;A\;$; $\;Q\;$ e $\;R\;$ estão relacionados por uma meia volta centrada em $\;B\;$ …
    Não sabendo a posição de $\;P\;$, tomemos $\;P_1\;$ para uma "falsa" posição de $\;P$artida. E $$\begin{matrix} &{\cal{R}}(A, 180^o)&&{\cal{R}}(B, 180^o)&&{\cal{R}}(C, 180^o)&&{\cal{R}}(D, 180^o)&&{\cal{R}}(E, 180^o)&\\ P_1& \longmapsto& P_2 &\longmapsto&P_3&\longmapsto& P_4 &\longmapsto&P_5 & \longmapsto & P'_1\\ \end{matrix}$$


  3. © geometrias, 1 de Junho de 2014, Criado com GeoGebra



  4. Fácil é verificar que a composta de duas meias voltas é uma translação: $$\forall P_1, \;\;\left({\cal{R}}(B, 180^o) \circ {\cal{R}}(A, 180^o)\right) (P_1)={\cal{R}}(B, 180^o)\left( {\cal{R}}(A, 180^o ) (P_1)\right)={\cal{R}}(B, 180^o) (P_2) = P_3 $$ $$ {\cal{R}}(B, 180^o) \circ {\cal{R}}(A, 180^o) = {\cal{T}}_{2\overrightarrow{AB}}: \;\;\;\; P_1 \longmapsto P_3$$ Do mesmo modo, $$ {\cal{R}}(C, 180^o) \circ {\cal{R}}(D, 180^o) = {\cal{T}}_{2\overrightarrow{CD}}: \;\;\;\; P_3 \longmapsto P_5$$ A composta das duas translações é uma translação. Assim: $${\cal{T}}_{2\overrightarrow{CD}} \circ {\cal{T}}_{2\overrightarrow{AB}} = {\cal{T}}_{2(\overrightarrow{AB}+\overrightarrow{CD})} : \;\;\; P_1 \longmapsto P_5 $$ que é o mesmo que dizer que as quatro primeiras meias voltas são equivalentes a uma translação.
  5. Se a composta de duas meias voltas é uma translação, a composta de uma translação com uma meia volta é uma meia volta: $$\begin{matrix} &{\cal{T}}_{2(\overrightarrow{AB}+\overrightarrow{CD})}&&{\cal{R}}(E, 180^o)&\\ P_1 & \longmapsto & P_5 & \longmapsto & P'_1 \end{matrix}$$ Se $\;P_1\;$ fosse a posição verdadeira de $\;P\;$, então seria $\;P_2 \equiv Q, \; \;P_3 \equiv R, \;\;P_4 \equiv S, \;\;P_5 \equiv T, \; \;\;\;P'_1 \equiv P$.
    Para a meia volta que a $\;P_1 \;$ faz corresponder $\;P'_1\;$ tem um ponto invariante, o centro da meia volta que é o ponto médio de todos os segmentos $P_1P'_1$ em que $\;P_1\;$ é um ponto qualquer de $\;P'_1\;$ é o seu correspondente por cinco meias voltas sucessivas: de centros $\;A, \;B, \;C, \;D, \;E$.
    É esse ponto médio de todos os $\;P_1P'_1\;$ que tomamos para $\;P\;$
    Variando as posições de $\;P_1\;$, podemos constatar que a posição de $\;P\;$ fica invariante.
  6. Finalmente, pode constatar que a sucessão de meias voltas de centros $\;A, \;B, \;C, \;D, \;E$ permite determinar os vértices $\;Q, \;R, \;S, \;T\;$ sendo $$\begin{matrix} &{\cal{R}}(A, 180^o)&&{\cal{R}}(B, 180^o)&&{\cal{R}}(C, 180^o)&&{\cal{R}}(D, 180^o)&&{\cal{R}}(E, 180^o)&\\ P& \longmapsto & Q & \longmapsto &R &\longmapsto & S& \longmapsto &T&\longmapsto& P\\ \end{matrix}$$
Pode variar as posições de $\;A, \;B,\;C,\;D, \;E\;$ e de $\;P_1\;$.

29.5.14

Resolver um problema de construção usando a meia volta


Problema:     Dadas duas circunferências $\;c_1\;$ e $\;c_2\;$ e um ponto $\;M\;$ determinar um ponto $\;P_1\;$ de $\;c_1\;$ e um ponto $\;P2\;$ de $\;c_2\;$ para os quais $\;M\;$ é o ponto médio de $\;P_1P_2\;$
Este problema está proposto no livro Simetrias e Transformações Geométricas de Eduardo Veloso (p.15).
O autor recomenda que
  • se comece por procurar o lugar geométrico dos pontos $\;B\;$ quando $\;A\;$ percorre $\;c_1\;$ sendo $\;AM=BM\;$, e
  • se investigue para que posições de $\;M\;$ há soluções ou não, uma, duas ou infinitas soluções do problema

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 29 de Maio de 2014, Criado com GeoGebra



  1. São dados um ponto $\;M\;$ e duas circunferências $\;c_1 = (O_1), \;c_2=(O_2)\;$
  2. Se $\;A, \;M, \; B\;$ são colineares e $\;\overrightarrow{AM}=\overrightarrow{MB}\;$, $\;A\;$ e $\;B\;$ são correspondentes por uma transformação de meia volta de centro em $\;M\;$, (ou $\;{\cal{R}}(M, 180^o)\;$ ou $\;{\cal{H}}(M, -1)\;$.
    Por isso, quando $\;A\;$ percorre $\;c_1\;$, $\;B\;$ percorre uma circunferência $\;c'_1\;$ que é imagem de $\;(c_1\;$ pela meia volta de centro em $\;M\;$
  3. No nosso caso, a posição de $\;M\;$ relativamente às circunferências $\;c_1, \;c_2$ é tal que $\;c'_1 . c_2 = \{ P_2,\; Q_2\}\;$. A reta $\;P_2M\;$ interseta $\;c_1\;$ em dois pontos, sendo um deles $\;P_1\;$ o correspondente original de $\;P_2\;$ pela meia volta de centro $\;M\;$: $$\begin{matrix} &{\cal{R}}(M, 180^o)& &\\ c_1&\longrightarrow &c'_1& \\ &&&\;\;\;c'_1.c_2 =\{P_2, \;Q_2\}\\ P_1& \longleftarrow & P_2& \;\;\;(P_1,\;P_2) \in c_1 \times c_2 \; \mbox{ é uma solução}\\ Q_1& \longleftarrow& Q_2& \;\;\;(Q_1,\;Q_2) \in c_1 \times c_2 \; \mbox{ é outra solução}\\ \end{matrix}$$
Pode variar a posição de $\;M\;$ e das circunferências $\;c_1, \;c_2$

26.5.14

Resolver problemas de construção usando a inversão


Problema:     Determinar dois pontos cada um sobre uma de duas retas dadas de tal modo que o produto das suas distâncias a um ponto dado seja uma dada constante.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 26 de Maio de 2014, Criado com GeoGebra



  1. São dadas: duas retas $\;r_1, \;r_2\;$, um ponto $\;O\;$ e um número $\;k\;$.
  2. Procuramos um ponto $\;P_1\;$ de $\;r_1\;$ e um outro $\;P_2\;$ de $\;r_2\;$, tais que $\;OP_1 \times OP_2 = k^2$, o mesmo é dizer que $\;P_1\;$ e $\;P_2\;$ são correspondentes pelas inversão de centro $\;O\;$ e potência $\;k^2\;$.
    Tomamos, por isso, para circunferência de inversão $\;(O, \;k)\;$ tracejada a vermelho.
  3. Pela inversão $\;{\cal{I}}(O, \;k^2)$, a reta $\;r_1\;$ é transformada numa circunferência (tracejada a azul) que passa por $\;O\;$ e pelos pontos de interseção da circunferência de inversão com a reta $\;r_1$
    Tomemos para ponto $\;P_2\;$ o ponto de interseção da circunferência $\;r'_1 \;$ com a reta $\;r_2\;$. Como $\;P_2\;$ de $\;r_2\;$ é um ponto de $\;r'_1\;$, terá um original $\;P_1\; $ em $\;r_1\;$, interseção desta reta com $\;OP_2\;$:
    Estes pontos $\;P_1, \; P_2\;$ são solução do problema: $$OP_1 \times OP_2 =k^2$$
Pode deslocar $\;O$, $\;r_1, \;r_2\;$ para além de $\;k\;$.
Não vamos apresentar outros exemplos de problemas de construção usando a inversão por termos apresentado anteriormente um conjunto considerável de aplicações da inversão.

22.5.14

Resolver problema de construção usando homotetia


Problema:     Determinar uma corda que passe por um ponto dado de uma circunferência dada que seja bissetada por uma corda dada.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 22 de Maio de 2014, Criado com GeoGebra



  1. São dados: uma circunferência $\;(A)\;$, um ponto $\;O\;$ e uma corda $\;CD\;$ da circunferência.
  2. Procuramos um ponto $\;P\;$ da circunferência de tal modo que $\;OP\;$ tenha o seu ponto $\;M\;$ médio em $\;CD\;$ que é o mesmo que dizer $\;OM=OP\;$ ou $\;\displaystyle \frac{OM}{OP}=\frac{1}{2}\;$ ou $\;\displaystyle \frac{OP}{OM}= 2\;$
    Pela homotetia $\;{\cal{H}}(O, \;2)\;$, de centro $\;O\;$ e razão $\;2\;$,
    $\; C\;\longmapsto \; C' : \; OC'=2OC\;$
    $\; D\;\longmapsto \; D' : \; OD'=2OD\;$
    $\; CD\;\longrightarrow \; C'D' : \; C'D'=2CD,\; C'D' \parallel CD$
    Um dos extremos de cada uma das cordas solução é $\;O\;$ e o outro será ponto da interseção circunferência $\;(A)\;$ dada com $\;C'D'\;$ No caso da nossa construção, tomamos $\;P \in (A).C'D'$ imagem, por $\;{\cal{H}}(O, \;2)$, de $\;M \in CD.OP$.
  3. A corda $\;OP\;$ é a solução. No caso da nossa construção há outra solução.
Pode deslocar $\;C\;$ ou $\;D\;$ sobre a circunferência para ver que ( e em que condições) pode haver uma só ou nenhuma solução.
Nota: O método usado para resolver este problema é o mesmo que usámos para resolver o problema da entrada anterior. Basta ler o enunciado de outra maneira: dadas as curvas $\;(A)\;$ e $\;CD\;$ determinar um par de pontos $\;(M , \;P) \in CD \times (A)\;$ tais que $\; \displaystyle {OP \over OM} = 2$

21.5.14

Resolver um problema de construção, usando homotetia (entre curvas)


Problema:     Dadas duas curvas $\;c_1\;$ e $\;c_2\;$ um ponto $\;O\;$ e um número $\;k\;$, determinar um ponto $\;P_1\;$ da curva $\;c_1\;$ e um ponto $\;P_2\;$ da curva $\;c_2\;$ tais que $\;\displaystyle \frac{OP_2}{OP_1} = k\;$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 21 de Maio de 2014, Criado com GeoGebra



  1. são dados: uma curva $\;c_1\;$ (no caso, uma hipérbole azul) e outra $\;c_2\;$ (no caso, uma parábola encarnada), um ponto $\;O\;$ , número $\;k$.
  2. Procuramos um par de pontos $\;(P_1, \; P_2)\:$ de $\;c_1 \times c_2\;$ de tal modo que $\;\overrightarrow{OP_2} = k. \overrightarrow{OP_1}\;$, que é o mesmo que dizer que $\;P_2\;$ é homotético de $\;P_1\;$ pela homotetia $\; {\cal{H}}(O, \;k)\;$
  3. Se determinarmos a curva $\;c'_1\;$, homotética de $\;c_1\;$ por $\; {\cal{H}}(O, \;k)\;$ e não for vazia a iinterseção $\;c'_1 . c_2\;$ encontraremos um ponto $\;P_2\;$ de $\;c_2\;$ a que corresponde o ponto $\;P_1\;$ de $\;c_1\;$ homotético de $\;P_2$
  4. Pode haver mais que uma solução. Também pode não haver solução.
Pode deslocar $\;O\;$ e o cursor $\;\fbox{k=-2, ..., 2}\;$ ao cimo à esquerda.

20.5.14

Resolver problemas de construção usando homotetia


Problema:     Para uma dada circunferência $\;c\;$ e um ponto $\;O\;$ do seu interior, determinar a corda que passa pelo ponto $\;O\;$ e por ele fica dividida em dois segmentos cuja razão $\;k\;$ é dada.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.


© geometrias, 20 de Maio de 2014, Criado com GeoGebra



  1. É dada a circunferência $\;c\;$ de centro em $\;C\;$ e o ponto $\;O\;$ no seu interior, para além da razão $\;k$.
  2. A corda que procurarmos $\;XY\;$ que procuramos passa por $\;O\;$ e deve ser dividida por $\;O\;$ em dois segmentos $\;OX\;$ e $\;OY\;$, tais que $\displaystyle \frac{OX}{OY} = k$. Procuramos $\;X, \;Y$ sobre a circunferência $\;c\;$ que satisfaçam essa condição.
    Essa condição é equivalente a $\;X\;$ ser o correspondente (a imagem) de $\;Y\;$ (original) por uma homotetia - $\;{\cal{H}} (O, \;-k)\;$ -de centro $\;O\;$ e razão $\;-k\;$, já que $\;OX\;$ é de sentido contrário a $\;OY$.
    Para encontrar a posição de algum deles bastará, usando qualquer pontos de $\;c\;$ e o seu centro $\;C\;$, determinar a imagem $\;c' =(C')\;$ de $\;c =(C)\;$ pela homotetia $\;{\cal{H}} (O, \;-k)\;$.
  3. No caso da nossa construção, os pontos de interseção $\;c.c'\;$ são $\;A\;$ e $\;B$. Tomemos $\;A\;$, para exemplo.
    Ao ponto $\;A\;$ de $\;c\;$ corresponde o ponto $\;A'\;$ de $\;c'\;$, tal que $\;\overrightarrow{OA'} = - k. \overrightarrow{OA}$.
    A reta $\;AA'\;$ passa por $\;O\;$ e corta a circunferência $\;c\;$ em $\;D$, para além de $\;A\;$ determinado na interseção $\;c.c'\;$. E como $\;D,\;O,\;A\;$ são colineares com $\;O\;$, $\;D \in c\;$ e $\;A \in c'\;$, $\;{\cal{H}} (O, \;-k) (D) = A\;$ e, em consequência, podemos concluir que: o segmento $\;AD\;$ é uma corda de $\;c\;$ a passar por $\;O\;$ para a qual $\;OA = k. DO$.
  4. O mesmo se pode fazer com $\;B\;$, para concluir que
    o segmento $\;BE\;$ é uma corda de $\;c\;$ a passar por $\;O\;$ para a qual $\;OB = k. EO$.
Deslocando o cursor $\;\fbox{k=1, ..., 4}\;$ ao cimo à esquerda, pode constatar que, para haver soluções do problema, não pode tomar quaisquer valores para $\;k\;$.

16.5.14

Resolver problema de construção usando uma homotetia


Problema:    De uma dada circunferência são dados dois raios. Determinar a corda da circunferência dada que trisseta aqueles dois raios

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas e na resolução do problema da entrada anterior.


© geometrias, 16 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 6}\;$ ao fundo, pode seguir os passos da construção.
  1. É dada a circunferência de centro em $\;O\;$ e seus dois raios $\;OR. \;OS\;$
  2. Na nossa resolução, tomamos o segmento $\;RS\;$, prolongamos os raios e, por um ponto $\;A\;$ de $\;OR\;$, tiramos uma paralela a $\;RS\;$ que interseta $\;OS\;$ em $\;B\;$.
  3. Sobre a reta $\;AB\;$ marcamos $\;C, \;D\;$ tais que $\;AB = AC =BD$
  4. Consideramos a homotetia de centro $\;O\;$ definida por $\;C\longmapsto C'\;$, sendo $\;C'= (O, \;OR).OC $.
    Pela mesma homotetia, $\;D\longmapsto D'\;$, sendo $\;D'= (O, \;OR).OD $.
  5. A corda $\;C'D'\;$ deve ser a solução do problema.
  6. $\;C'D'\;$ é paralela a $\;CD\;$ e corta $\;OR\;$ e $\;OS\;$ respetivamente em $\;A'\;$ e $\;B'$, assim designados por serem correspondentes de $\;A\;$ e de $\;B\;$ pela homotetia de centro $\;O\;$ antes definida.
    A homotetia transforma segmentos iguais em segmentos iguais. Assim, $$\begin{matrix} CA &= &AB&=&BD\\ \downarrow&\Downarrow&\downarrow&\Downarrow&\downarrow\\ C'A'&=&A'B'&=&B'D' \end{matrix}$$ A corda $\;C'D'\;$ de $\;(O, \;OR)\;$ é trissetada pelos dois raios $\;OR, \;OS\;$

14.5.14

Resolver problema de construção de triângulo usando homotetia


Problema:     Desenhar um triângulo $\;ABC\;$ de que é dada a posição de $\;A\;$ e dois segmentos com comprimentos iguais a $\;a+b=BC+AC\;$ e $\;a+c=BC+AB\;$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas e na resolução do problema da entrada anterior.


© geometrias, 14 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo, pode seguir os passos da construção.
  1. São dados o vértice $\;A\;$ e os comprimentos $\;a+b, \;a+c\;$
  2. Se desenharmos um triângulo qualquer $\;AB_1C_1\;$, sendo $\;AC_1 = a+b\;$ e $\;AB_1 = a+c\;$, o problema resume-se ao da anterior entrada, já que queremos $\;AC=b=AC_1-a, \;AB=c=AB_1-a, BC=a\;$ que é o mesmo que dizer que queremos determinar os pontos $\;B\;$ de $\;AC_1\;$ e $\;C\;$ de $\;AB_1\;$ tais que $\;BB_1= BC=CC_1 =a\;$
    Começamos por determinar os pontos $\;B_1, \;C_1\;$ tais que $\;AB_1=a+c, \;AC_1=a+b$.
  3. Traçados os lados do triângulo $\;AB_1C_1\;$, sobre $\;AB_1\;$, marcamos um ponto qualquer $\;B'\;$.
  4. Determinamos o ponto $\;C''\;$ sobre $\;AC_1\;$ tal que $\;C_1C''=B_1B''$. O mais natural é que $\;C_1C''=B_1B''\neq B'C''$
  5. Tirando por $\;C''\;$ uma paralela a $\;B_1C_1\;$, esta interseta a circunferência de centro $\;B'\;$ e raio $\;B'B_1\;$ num ponto $\;C'\;$ tal que $\;B'B_1=B'C'=C'C'_1\;$ , sendo o triângulo $\;A'B_1C'_1\;$ correspondente de $AB_1C_1$ por uma homotetia de centro em $\;B_1\;$: $$\begin{matrix} A_1 & \longmapsto &A\\ B_1 &\longmapsto &B_1\\ C'_1 & \longmapsto & C_1 \end{matrix}$$
  6. Essa homotetia de centro $\;B_1\;$ fará corresponder $\;C'\;$ a $\;C= B_1C'.AC_1\;$ e
  7. $\;B'\;$ a $\;B\;$, este último determinado como interseção do lado $\;AB_1\;$ com a paralela a $\;B'C'\;$ tirada por $\;C$.
  8. A homotetia transforma segmentos iguais em segmentos iguais. Assim, $$\begin{matrix} B_1B' &= &B'C'&=&C'C_1 &&\\ \downarrow&\Downarrow&\downarrow&\Downarrow&\downarrow&&\\ B_1B&=&BC&=&CC_1&=&a \end{matrix}$$
  9. $\;AB =AB_1-BB_1=a+c-a=c, \; BC=a, \; AC=AC_1-C_1C= a+b-a=b\;$
  10. Desenhámos assim um triângulo $\;ABC\;$ que é a solução do problema, para um arbitrado ângulo $\hat{A}$, que pode variar deslocando $\;B_1\;$ ou $\;C_1$

13.5.14

Resolver problema de construção usando homotetia


Problema:     Determinar os pontos $\;D\;$ e $\;E\;$ sobre os lados $\;AB\;$ e $\;AC\;$ de um triângulo $\;ABC\;$ de tal modo que $\;BD=DE=EC$.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 13 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 5}\;$ ao cimo à direita, pode seguir os passos da construção.
  1. São dados os vértices $\;A, \;B, \;C$ e os lados $\;BC=a, \;AC=b, \;AB=c\;$ de um triângulo..
  2. Vamos procurar as posições de $\;D\;$ sobre $\;BA\;$ e de $\;E\;$ sobre $\;AC\;$ de modo que $\;BD=DE=EC.$ Para isso, começamos por tomar um ponto genérico $\;D'\;$ de $\;AB\;$. Pode ser deslocado sobre $\;AB\;$ fazendo variar $\;BD'\;$ e certamente que uma das posições que $\;D'\;$ pode tomar será aquela que verifica as condições do nosso problema. Tomamos a interseção $\;E''$ de $\;AC\;$ com a circunferência centrada em $\;C\;$ e de raio $\;BD'\;$.
    Garantimos que $\;BD' = CE''\;$ mas nada garante que $\;D'E''\;$ seja igual a $\;BD'$. Nem parece!
  3. Fácil é calcular um ponto $\;E'\;$ á mesma altura de $\;E''\;$ e tal que $\;BD'=D'E'\;$ na interseção da paralela a $\;BC\;$ tirada por $\;E''\;$ com a circunferência centrada em $\;D'\;$ e raio $\;D'B$
  4. $\;E'\;$ está sobre o lado $\; A'C'\;$, paralelo a $\;AC=b\;$, de um triângulo $\;A'BC'\;$, sendo $\;A'B=c, \;BC'= a\;$ e $\;BD'=D'E'=E'C'$
  5. Um homotetia de centro $\;B\;$ tal que $\;A \longmapsto A'. \;B \longmapsto B'\;$ fará corresponder $\;E'\;$ a $\;E= BE'.AC\;$ e $\;D'\;$ a $\;D\;$, este último determinado como interseção do lado $\;BA\;$ com a paralela a $\;D'E'\;$ tirada por $\;E$.
  6. Por uma homotetia, segmentos iguais são transformados em segmentos iguais. Assim, $$\begin{matrix} BD' &= &D'E'&=&E'C'\\ \downarrow&\Downarrow&\downarrow&\Downarrow&\downarrow\\ BD&=&DE&=&EC \end{matrix}$$ $\;D, \;E\;$, assim determinados, satisfazem as condições do nosso problema.

10.5.14

Resolver um problema de construção usando uma rotação e uma homotetia


Problema:     Inscrever um quadrilátero com determinada forma num semicírculo dado, em que um lado específico do quadrilátero inscrito esteja no diâmetro do semicírculo.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 9 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo ao meio, pode seguir os passos da construção.
  1. São dados um quadrilátero $\;ABCD\;$ e um semicírculo de diâmetro $\;EF\;$; pretendemos obter um quadrilátero $\;A''B''C''D''\;$ semelhante ao dado e inscrito no semicírculo de tal modo que o lado $\;A''B''\;$ fique aposto ao diâmetro $\;EF$.
  2. Melhor será começar por ver em que semicírculo se inscreverá o quadrilátero $\;ABCD\;$, considerando $\;AB\;$ sobre o diâmetro. Tal semicírculo fica bem determinado pelo seu centro $\;G\;$, interseção da mediatriz de $\;CD\;$ com a reta $\;AB\;$ que contém o diâmetro.
  3. Já temos uma situação em tudo semelhante à que queremos ter no final. Para facilitar podemos efetuar uma rotação para que os diâmetros dos semicírculos fiquem paralelos. Pode ser feito de vários maneiras. Nós optamos por rodar o diâmetro $\;HI$, em torno de $\;I$
  4. Se rodarmos em torno de $\;I\;$ no sentido direto de um ângulo $\;\alpha\;$
  5. obtemos uma figura congruente com a anterior, sendo $\;IH'\; \parallel \;EF\;$
    A rotação $\;{\cal{R}}(O, \alpha)\;$ preserva os comprimentos:
    $\;A'B'=AB, \; B'C'=BC, \;C'D'=CD, \; D'A'=DA\;$
    e os ângulos:
    $\; D\hat{A}B =-D'\hat{A'}B', \; A\hat{B}C=-A'\hat{B'}C', \; B\hat{C}D=-B'\hat{B'}D', \; C\hat{D}A=-C'\hat{D'}A'$,
    sem considerarmos a orientação, $\; \hat{A} =\hat{A'}, \; \hat{B}=\hat{B'}, \; \hat{C}=\hat{B'}, \; \hat{D}=\hat{D'}\;$
  6. Bastará agora definir a transformação que faz corresponder $\;EF\;$ a $\;IH'\;$ que como sabemos é uma homotetia de centro $\;P = IE.H'F\;$ e de razão $$k=\frac{PE}{PI} = \frac{PF}{PH}$$ Claro que, por essa homotetia $\;{\cal{H}}(P, k)$, a $\;G'\;$ corresponderá $\;O\;$, centro do semicírculo dado.
  7. Pela homotetia definida, encontramos os pontos $\;A'', \;B''$ como $\;PA'.EF\;$ e $\;PB'.EF\;$ respetivamente
  8. e como a homotetia preserva a incidência, os pontos do semicírculo de diâmetro $\;H'I\;$ têm correspondentes sobre o semicírculo de diâmetro $\;EF\;$: $\;C'',\; D''\;$ estarão na interseção da semicircunferência dado com as retas $\;PC'\;$ e $\;PD''$.
  9. A composta $\;{\cal{H}}(P, k)\;\circ\;{\cal{R}}(O, \alpha)\;$ que estabelece as correspondências $\;A \longmapsto A''\; \wedge \; B \longmapsto B''\;$ faz corrresponder $\;AB\;$ a $\;A''B''$.
    E, do mesmo modo, $BC \longrightarrow B''C'', \;CD \longrightarrow C''D'',\;DA \longrightarrow D''A''$ sendo $$\frac{A''B''}{AB} = \frac{B''C''}{BC} = \frac{C'''D''}{CD} = \frac{D''A''}{DA}=k$$
  10. E como a homotetia também preserva os ângulos $$\hat{A''} =\hat{A}, \;\hat{B''} =\hat{B}, \;\hat{C''} =\hat{C}, \;\hat{D''} =\hat{D}$$ A solução para o nosso problema é o quadrilátero $A''B''C''D''\;$ com $\;A'', B''\;$ no diâmetro $\;EF\;$ e $\;C', \;D''\;$ na semicircunferência dada, com lados correspondentes proporcionais (cada um a cada um) e ângulos correspondentes iguais aos do quadrilátero $\;ABCD$

6.5.14

Resolver um problema de construção usando homotetias


Problema:    Determinar (com régua e compasso) os pontos de interseção de uma reta dada com uma parábola de que se conhecem a diretriz e o foco.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.
Deve lembrar-se que uma parábola é o lugar geométrico (conjunto) dos pontos equidistantes de uma reta- diretriz - e de um ponto - foco.

© geometrias, 6 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{n=1, ..., 6}\;$ ao fundo à esquerda, pode seguir os passos da construção.
  1. São dadas uma reta $\;a\;$; uma reta $\;d\;$ - diretriz - e um ponto $\;F\;$ -foco -de uma parábola.
    • Que pontos da reta $\;a\;$ são pontos da parábola de diretriz $\;d\;$ e foco $\;F\;$? Estes pontos são centros de circunferências tangentes a $\;d\;$ e a passar por $\;F\;$. Não sabemos quais são; tomemos um ponto $\;A\;$, qualquer de $\;a\;$. Se este ponto for centro de uma circunferência a passar por $\;F\;$ e tangente a $\;d\;$, ele será um dos pontos que procuramos. O mais natural é que esse ponto não verifique essas condições. Em muitos problemas de construção interessa tanto saber bem o que queremos como construir uma falsa posição ( $\;A;\;$ variável sobre $\;a\;$) para conjeturar e para, a partir dela, determinar a posição solução.
  2. Tomemos o ponto $\;a.d\;$ a que chamamos $\;O\;$ e a reta $\;OF\;$
    Cada homotetia de centro $\;O\;$ é uma transformação geométrica que faz corresponder a cada ponto de $\;a\;$ um ponto de $\;a\;$, a cada ponto de $\;OF\;$ um ponto de $\;OF\;$, a cada ponto de $\;d\;$ um ponto de $\;d\;$ e fica bem definida por um ponto e o seu correspondente colineares com $\;O\;$.
  3. Tomemos então um ponto $\;A\;$ sobre $\;a\;$ e a circunferência nele centrada que é tangente à diretriz em $\;T\;$, na nossa figura. Esta circunferência não passa por $\;F\;$.
  4. A circunferência $\;(A, AT)\;$ interseta a reta $\;OF\;$ em dois pontos: $\;P, \;Q\;$ tais que $\;AP=AT=AQ\;$
    • Pela homotetia $\;{\cal{H}}_1\;$ de centro $\;O\;$ que faz corresponder $\;Q\;$ a $\;F\;$, à reta $\;AQ\;$ fará corresponder uma paralela que passa por $\;F\;$ que interseta a reta $\;a\;$ num ponto $\;I\;$ e a $\;AT\;$ uma paralela $\;IK\;$.
      Por ser $\;AT=AQ\;$, é $\;IK=IF\;$, o que quer dizer que $\;I\;$ é um ponto de $\;a\;$ equidistante de $\;d\;$ e de $\;F\;$, logo uma das soluções do problema.
    • Do mesmo modo, utilizando a homotetia $\;{\cal{H}}_2\;$ de centro $\;O\;$ que transforma $\;P\;$ em $\;F\;$, $$\begin{matrix} & \;{\cal{H}}_2(O)\; & &&\\ P &\longrightarrow & F & \;\;\;P\in OF\;\;&\\ AP & \longrightarrow & FJ & \;\;\; AP \parallel FJ\;\;& \\ AT & \longrightarrow & JL &\;\;\;AT\parallel JL\;\;&AP=AT \Leftrightarrow FJ=JL\\ A &\longrightarrow & J &\;\;\;J\in a\;\;&\\ T &\longrightarrow & L & \;\;\;L\in d \;\;&\\ \end{matrix} $$ sendo $\;J\;$ assim determinado um ponto de $\;a\;$ equidistante de $\;F\;$ e de $\;d\;$, logo outra das soluções do problema.
  5. Apresentamos finalmente como ilustração a parábola de diretriz $\;d\;$ e foco $\;F$. Para ver que a demonstração/construção para além de ser, parece boa.

3.5.14

Resolver problema de construção usando a reflexão


Problema:    Determinar um quadrado tendo dois vértices opostos sobre uma reta dada e os outros dois em duas circunferências dadas

A construção a seguir ilustra a resolução do problema que utiliza o método da anterior entrada.


© geometrias, 3 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{n=1, ..., 4}\;$ ao fundo à direita, pode seguir os passos da construção.
  1. São dadas uma reta $\;a\;$ e duas circunferências $\;(O_1)\;$ e $\;(O_2)\;$.
  2. Um quadrado tem diagonais iguais e perpendiculares que se bissetam mutuamente. Pelas condições do problema, dois vértices opostos estão sobre $\;a\;$ e dos outros dois, um estará sobre $\;(O_1)\;$ e outro sobre $\;(O_2)\;$. Estes últimos estarão sobre uma perpendicular a $\;a\;$ e equidistantes do pé da perpendicular em $\;a\;$ que será o centro do quadrado.
    O método para resolver este problema de determinar dois pontos sobre uma perpendicular a $\;a\;$ equidistantes do pé da perpendicular foi apresentado na entrada anterior. Assim:
    • No caso da nossa figura, refletimos $\;(O_1)\;$ relativamente á reta $\;a\;$. $$\begin{matrix} & {\cal{E}}_a & &\\ (O_1) & \longrightarrow & (O'_1) & \\ A & \longleftarrow & C \in (O_1).(O_2) & \;\;\;\;\; AC \perp a\\ G &\longleftrightarrow &G \in a.AC & \;\;\;\;\; AG =GC\\ \end{matrix} $$
  3. Como as diagonais do quadrado são iguais os dois vértices opostos que incidem em $\;a\,$ podem obter-se como interseção de uma circunferência de centro $\;G\;$ que passe por $\;A\;$ com a reta $\;a\;$: $\;B, \;D$
    O quadrado $\;ABCD\;$ é solução do problema.

2.5.14

Resolver um problema de construção usando uma reflexão


Problema:    Desenhar a perpendicular a uma dada reta que corte duas curvas dadas em pontos equidistantes do pé da perpendicular na reta dada

A construção a seguir ilustra a resolução do problema.


© geometrias, 2 de Maio de 2014, Criado com GeoGebra


Clicando no botão Resolução ao fundo à direita, pode ver a construção da solução.
  1. São dadas uma reta $\;a\;$ e duas curvas  -   uma elipse $\;e\;$ e uma parábola $\;p\;$.
  2. O método para resolver este tipo de problemas consiste em refletir uma das curvas relativamente à reta dada. No nosso caso, optámos por refletir $\;e\;$ relativamente á reta $\;a\;$.
    E, no caso da nossa figura, $$\begin{matrix} & {\cal{E}}_a & &\\ e & \longrightarrow & e' & \\ K & \longleftarrow & I \in e'.p & \;\;\;\;\; IK \perp a\\ I_0 &\longleftrightarrow & I_0 \in a.IK & \;\;\;\;\; II_0 =I_0K\\ L & \longleftarrow & J \in e'.p & \;\;\;\;\; JL \perp a \\ J_0 & \longleftrightarrow & J_0 \in a.JL & \;\;\;\;\; JJ_0 =J_0L\\ \end{matrix} $$
  3. Determinámos assim os pontos $\;I \in p,\;\; K \in e\;$ sobre uma perpendicular a $\;a\;$ que, sendo correspondentes pela reflexão de eixo $\;a\;$, estão a igual distância do pé $\;I_0\;$ da perpendicular $\;I K\;$ em $\;a$:    a recta $\;IK\;$ é solução do problema.
    No caso da nossa construção, também a reta $\;JL\;$ é solução do problema.

1.5.14

Resolver problema de construção usando transformação de meia volta

Problema:    Num dado quadrilátero de vértices $\;A,\;B, \;C, \;D\;$ inscrever um paralelogramo de centro num ponto $\;O\;$ dado.

A construção a seguir ilustra a resolução do problema.


© geometrias, 1 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\fbox{n=1, ..., 4}$  (direita ao fundo) pode ver os passos da resolução.
  1. São dados 5 pontos $\;A,\;B, \;C, \;D, \;O$
  2. Os quatro vértices $\;A,\;B, \;C, \;D \;$ definem quatro retas $\;AB=a, \;BC=b, \;CD=c, \;DA=d\;$. Assinalam-se os quatro segmentos dessas retas: $\;AB, \;BC, \;CD, \;DA\;$ lados.
  3. Na nossa resolução recorremos a uma meia volta de centro em $\;O$.  Por essa meia volta, cada uma das retas tem por correspondente uma reta paralela $\;a \parallel a', \; b\parallel b', ...\;$, sendo contrários os sentidos de $\,AB\;$ e $\;A'B'\;$, etc. segmentos assinalados a tracejado e com as cores dos seus correspondentes pela meia volta. $$\begin{matrix} & {\cal{R}}(O, 180^o) & & \\ a & \longrightarrow & a'&\;\;\; a\parallel a'\\ b & \longrightarrow & b'& \;\;\;b\parallel b'\\ c & \longrightarrow & c'& \;\;\;c\parallel c'\\ d & \longrightarrow & d'&\;\;\; d\parallel d'\\ a.b = B & \longmapsto & a'.b'=B' & \;\;\;O\in BB' \wedge BO=OB'\\ b.c = C & \longmapsto & b'.c'=C' &\;\;\; O\in CC'' \wedge CO=OC'\\ c.d = D & \longmapsto & c'.d'=D' &\;\;\; O\in DD' \wedge DO=OD'\\ d.a = A & \longmapsto & d'.a'=A' &\;\;\; O\in AA' \wedge AO=OA'\\ \end{matrix} $$
  4. Tomamos E=a.c' , F=b.d', G=a'.c, H=b'.d $$\begin{matrix} & {\cal{R}}(O, 180^o) & & \\ a & \longrightarrow & a'&\;\;\; a\parallel a'\\ b & \longrightarrow & b'& \;\;\;b\parallel b'\\ c & \longrightarrow & c'& \;\;\;c\parallel c'\\ d & \longrightarrow & d'&\;\;\; d\parallel d'\\ E= a'.c &\longmapsto& a.c'=G & \;\;\; O\in EG \wedge EO=OG\\ F= b.d' &\longmapsto& b'.d=H & \;\;\; O\in FH \wedge FO=OH\\ \end{matrix} $$ O quadrilátero $EFGH$ tem diagonais $EG$ e $FH$ que se intersetam e bissetam em $O$. É, por isso, um paralelogramo de centro $\;O\;$ inscrito no quadrilátero de vértices $\;ABCD$: $\;\;\;\;E\in a, \;F\in b, \;G \in c, \;H \in d$