Mostrar mensagens com a etiqueta reflexão. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta reflexão. Mostrar todas as mensagens

7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16

24.12.18

da Epicicloide à Hipocicloide


Segue-se um texto que acompanha, etapa a etapa, os passos da construção. Isto é, vão sendo apresentados os elementos um a um. Clicar no botão da animação pode não ter qualquer utilidade enquanto não se mostram os elementos que se sucedem por etapas. Se um elemento não está visível, não se vê o movimento desse elemento. Aconselhamos, por isso, que se utilize o botão de animação só a partir da etapa 3. Como alguns elementos em movimento deixam rasto, pode ser necessário recorrer ao botão de reiniciar para limpar esses rastos.
  1. Começamos por mostrar duas circunferências:
    • uma de centro $\;A\;$ e raio $\;r\;$
    • outra de centro $\;C\;$ e raio $\;s,\;$
    • tangentes em $\;B\;$ e $\;\overline{AB}=r=3s=3\overline{CB}\;$
  2. Consideremos que a circunferência de centro $\;C\;$ vai rolar em torno de $\;A\;$. Apresenta-se uma outra posição da circunferência de raio $\;s\;$ correspondente a uma rotação de ângulo $\; \alpha \;$ com centro $\;A.\;$ Nessa posição, o ponto de tangência das duas circunferências é uma posição $\;D\;$ tal que o ângulo $\;B\hat{A}D\;$ tem amplitude $\; \alpha \;$ e, pela mesma rotação o ponto $\;C\;$ há de estar agora numa posição $\;E\;$ tal que $\; C\hat{A}E = \;B\hat{A}D = \alpha\;$
  3. e o ponto fixo em $\; (C, \;s)\;$ que estava na posição $\; B\;$ inicial há-de estar agora numa nova posição $\;F\;$ de $\;(E,\; s)\; $ e tal que o arco desta, $\; \widehat{DEF},\;$ há-de ter um comprimento igual ao arco $\;\widehat{BAD}=r\alpha\;$ ou seja $\; 3s\alpha .\;$ Mostra-se a trajetória descrita por $\; F\;$ residente fixo da circunferência $\;(E,\; s)\;$ rolante é uma epicicloide (já apresentada antes)




  4. O reflexo de $\;F\;$ ao espelho $\;D\;$ é um ponto $\;G\;$ de uma circunferência reflexo de $\;(E,\;s)\;$ e tangente a $\;(A,\;r)\;$ no ponto $\;D\;$ que obviamente se desloca tangencialmente e interiormente a $\;(A\;r).\;$ O ponto $\;G\;$ assim determinado poderia obviamente ser determinado sem qualquer recurso às reflexões de cada um dos pontos $\;F\;$ relativamente a cada ponto (posição) $\;D\;$ que varia com $\; \alpha. \;$ O lugar geométrico dos pontos $\;G\;$ com a variação de $\;D \; \mbox{ou}\; \alpha \;$ é também mostrado. Pode usar a animação para ver os deslocamentos e os traços dos pontos $\; F\; \mbox{e} \;G.\;$ Para limpar esses rastos, clique no botão (à direita alta) de reiniciar.
    Chamo a atenção que todos ângulos de rotação que transformam $\;B\;$ em $\;D\;$ ou $\;C\;$ em $\;E,;$ em torno de $\;A\;$ e $\;D\;$ em $\;F\;$ ou $\;D\;$ em $\;G\;$ em torno de $\;E\;$ têm o mesmo sentido, para além da igualdade das distâncias em arco percorridas relativamente a quaisquer duas posições de $\;D\;$ (ou dois valores de $\; \alpha\;$)por exemplo , $\;r\alpha\;$ de $\;B\;$ até $\;D\;$) ou duas posições de $\;F\;$ ou $\;G\;$ nas respetivas circunferências (por exemplo os arcos de $\;D\;$ a $\;F\;$ e de $\;D\;$ a $\;G\;$ têm comprimento $\; 3s\alpha = r\alpha).$
  5. Neste passo, experimentamos ver qual é a trajetória do ponto $\;H\;$ (reflexo de $\;F\;$ no espelho$\;AE\;$) em que são iguais as amplitudes dos ângulos $\;\angle D\hat{E}H\; $ e $\;\angle D\hat{E}F\;$ mas com sentidos opostos e, logo em que o ponto $\;H\;$ é obtido por rotação de $\;D\;$ em torno de $\;E\;$ segundo um ângulo igual mas de sinal ou sentido contrário ao sentido do ângulo da rotação de centro $\;A\;$ que nos leva de $\;B\;$ até $\;D\;$
  6. Finalmente, consideramos o ponto $\;I\;$ reflexo de $\;H\;$ ao espelho $\;D\;$ que é ponto da circunferência reflexo de $\;(E,\;s)\;$ no mesmo espelho $\;D\;$ e nos devolve mais uma das hipocicloides - curvas cíclicas assim obtidas: como trajetória de um ponto preso a uma circunferência (geratriz) que rola tangencial e interiormente a uma outra circunferência (directriz).

21.11.17

Áreas. Problemas de Optimização(6)

Problemas Sangaku de Optimização

Enunciado do problema (interpretado):
Considere retângulos de papel (de cantos (vértices)$\;A,\;E,\;F,\;D\;$) que têm a mesma altura ($\;AD=EF\;$) como a maior das suas dimensões. (No caso da nossa figura $\;AE < AD).\;$
Imagine que dobra cada um dos retângulos de papel retangulares de tal modo que um dos vértices vá sobrepor-se ao vértice oposto (por exemplo $\;A \longrightarrow A’=F\;$ como no caso da nossa figura).
Para qual dos retângulos de papel $\;AEFD\;$ é máxima a área do triângulo $\;\;[DHF]\;$ vermelho?

Na figura abaixo apresentam-se inicialmente as etapas da construção que ilustra o enunciado do problema, a saber:

  1. Sendo $\;\overline{AD}\;$ invariante, no caso da nossa figura está fixado em $\;4,\;$ a outra dimensão $\;\overline{AE}\;$ variável, pode tomar qualquer valor positivo menor que o de$\; \overline{AD}.\;$ Por isso, na figura consideramos $\;E\;$ um ponto móvel em $\;[AB]\;$
  2. 20 novembro 2017, Criado com GeoGebra

  3. Mostramos a diagonal $\;AF\;$ porque vamos dobrar o papel levando $\;A\;$ a sobrepor-se a $\;F,\;$ ou seja $\;A \mapsto A’ \equiv F\;$ por reflexão relativa ao ponto $\;M\;$ médio de $\;AF \;$ e a dobra, que é o conjunto dos pontos do retângulo que se mantêm nas mesmas posições, será uma perpendicular a $\;AF\;$ tirada por $\;M\;$ a intersetar $\;AD\;$ em $\;H\;$ e $\;EF\;$ em $\;G. \;$ A dobra é eixo da reflexão para a qual $$M \mapsto M, \;\;G \mapsto G, \; \;H \mapsto H, \;\;A \mapsto F$$ e, em consequência, $\;HA \rightarrow HF \;$ e $\;\overline{HA}= \overline{HF}.\;$
  4. Mostramos o ponto $\;E’\;$ das perpendiculares ao eixo $\;HG\;$ tirada por $\;E\;$ e a $\;HF\;$ tirada por $\;F\;$ (esta última por a perpendicularidade é invariante por reflexão e $\;HA \rightarrow HF \;$ e $\; AF \rightarrow FE’ = A’E\;$ e $\overline{AE}=\overline{FE’}.\;$ Claro que $\;GE \rightarrow GE’\;$ e $\overline{GE}=\overline{GE’}.\;$ Quando dobramos o papel, o quadrilátero $\;AEGH\;$ passa a ocupar a posição de $\;FE’GH.\;$
    E ganha realce o triângulo vermelho $\;DHF\;$ que é o que nos interessa estudar: Quando a dimensão $\;\overline{AE}=x\;$ do retângulo varia, como varia a área $\;y\;$ de $\;FDH\;$ ?
  5. Designamos por $\;x\;$ o valor do comprimento variável comum a vários segmentos $\;AE=DF=FE’\;$ que varia quando a posição de $\;E\;$ varia sobre $\;[AB]\;$ e por $\;y\;$ o valor correspondente à área de $\;FDH\;$ que varia com $\;x = DF\;$ e é o gráfico dessa dependência de $\;y\;$ que estudamos: Se designarmos por $\;h\;$ a invariante $\;\overline{AD}\;$ temos por um lado $\; h-dH=HF\;$ e, por outro, $\;HF^2=x^2+DH^2\;$, podemos escrever $\;(h-DH)^2 = x^2+HD^2\; \; \mbox{ou} \;\; h^2 + DH^2 -2h.DH = x^2 + DH^2, \;\;$ de onde decorre que $$DH= \frac{h^2-x^2}{2h}$$ O valor $$\mbox{Área de} \; \;[FDH] = \frac{FD \times DH}{2}$$ correspondente à área $\;y\;$ pode ser expresso $$y = \frac{x \times (h^2- x^2)}{4h}\,\;\mbox{ou}\;\; y= \frac{1}{4h} (-x^3+h^2.x)$$ O gráfico $\;(x,\; f(x))\;$ para o domínio de valores para $\;x\;$ conforme as condições do problema, a saber $\;]0,\; h[\;$
  6. Para determinar o valor de $\;x\;$ correspondente ao máximo dos valores $\;y\;$ consideremos o uso da derivada $$y’(x)= \frac{1}{4h} (-3x^2+h^2)$$ Para $x: \;\;0< x < h\;$, y’(x) anula-se para $ -3x^2+h^2 = 0 \Leftrightarrow x= \displaystyle \frac{1}{\sqrt{3}} h.$
    Ora $$\; x < \frac{\sqrt{3}}{3} h \Rightarrow x^2<\frac{h^2}{3} \Rightarrow -3x^2> -h^2 \Rightarrow -3x^2+h^2 >h^2-h^2 \Rightarrow -3x^2+h^2 >0$$ o que quer dizer que à esquerda de $\;\displaystyle \frac{\sqrt{3}}{3} h\;$ a função $\;y(x)\;$ cresce com $\;x\;$. E, de modo simétrico, $$\; x > \frac{\sqrt{3}}{3} h \Rightarrow x^2 > \frac{h^2}{3} \Rightarrow -3x^2 < -h^2 \Rightarrow -3x^2+h^2 < h^2-h^2 \Rightarrow -3x^2+h^2 < 0$$ e com $\;x\;$ para a direita de $\;\displaystyle \frac{\sqrt{3}}{3} h\;$ a função $\;y(x)\;$ decresce Ou seja, para todos os pontos do domínio $\;]0, \; h[\;$ a área do triângulo vermelho tem valores nunca superiores a $$y\left(\displaystyle \frac{\sqrt{3}}{3} h\right) = \frac{1}{4h} \left(-\left(\frac{\sqrt{3}}{3} h\right)^3+h^2.\frac{\sqrt{3}}{3} h\right)= \frac{\sqrt{3} h^2}{18}$$
No caso da nossa figura em que $\;h=4\;$, de entre os triângulos $\;FDH, \;$ aquele que tem área máxima de valor aproximado 1,5396 tem o cateto $\;DF = \displaystyle \frac{4\sqrt{3}}{3} \approx 2,3094 $ □


Sangaku Optimization Problems:
(All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
Tenman Shrine, 1822, Takeda Atsunoshin
Problem Statement: A rectangular piece of paper is folded so that two opposite corners coincide. If the height of the rectangle is fixed at a given length, what dimensions of the rectangle will give the maximum area of the shaded triangle?
The Sangaku in Gumma. Gumma Wasan Study Association, 1987.

3.5.14

Resolver problema de construção usando a reflexão


Problema:    Determinar um quadrado tendo dois vértices opostos sobre uma reta dada e os outros dois em duas circunferências dadas

A construção a seguir ilustra a resolução do problema que utiliza o método da anterior entrada.


© geometrias, 3 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{n=1, ..., 4}\;$ ao fundo à direita, pode seguir os passos da construção.
  1. São dadas uma reta $\;a\;$ e duas circunferências $\;(O_1)\;$ e $\;(O_2)\;$.
  2. Um quadrado tem diagonais iguais e perpendiculares que se bissetam mutuamente. Pelas condições do problema, dois vértices opostos estão sobre $\;a\;$ e dos outros dois, um estará sobre $\;(O_1)\;$ e outro sobre $\;(O_2)\;$. Estes últimos estarão sobre uma perpendicular a $\;a\;$ e equidistantes do pé da perpendicular em $\;a\;$ que será o centro do quadrado.
    O método para resolver este problema de determinar dois pontos sobre uma perpendicular a $\;a\;$ equidistantes do pé da perpendicular foi apresentado na entrada anterior. Assim:
    • No caso da nossa figura, refletimos $\;(O_1)\;$ relativamente á reta $\;a\;$. $$\begin{matrix} & {\cal{E}}_a & &\\ (O_1) & \longrightarrow & (O'_1) & \\ A & \longleftarrow & C \in (O_1).(O_2) & \;\;\;\;\; AC \perp a\\ G &\longleftrightarrow &G \in a.AC & \;\;\;\;\; AG =GC\\ \end{matrix} $$
  3. Como as diagonais do quadrado são iguais os dois vértices opostos que incidem em $\;a\,$ podem obter-se como interseção de uma circunferência de centro $\;G\;$ que passe por $\;A\;$ com a reta $\;a\;$: $\;B, \;D$
    O quadrado $\;ABCD\;$ é solução do problema.

2.5.14

Resolver um problema de construção usando uma reflexão


Problema:    Desenhar a perpendicular a uma dada reta que corte duas curvas dadas em pontos equidistantes do pé da perpendicular na reta dada

A construção a seguir ilustra a resolução do problema.


© geometrias, 2 de Maio de 2014, Criado com GeoGebra


Clicando no botão Resolução ao fundo à direita, pode ver a construção da solução.
  1. São dadas uma reta $\;a\;$ e duas curvas  -   uma elipse $\;e\;$ e uma parábola $\;p\;$.
  2. O método para resolver este tipo de problemas consiste em refletir uma das curvas relativamente à reta dada. No nosso caso, optámos por refletir $\;e\;$ relativamente á reta $\;a\;$.
    E, no caso da nossa figura, $$\begin{matrix} & {\cal{E}}_a & &\\ e & \longrightarrow & e' & \\ K & \longleftarrow & I \in e'.p & \;\;\;\;\; IK \perp a\\ I_0 &\longleftrightarrow & I_0 \in a.IK & \;\;\;\;\; II_0 =I_0K\\ L & \longleftarrow & J \in e'.p & \;\;\;\;\; JL \perp a \\ J_0 & \longleftrightarrow & J_0 \in a.JL & \;\;\;\;\; JJ_0 =J_0L\\ \end{matrix} $$
  3. Determinámos assim os pontos $\;I \in p,\;\; K \in e\;$ sobre uma perpendicular a $\;a\;$ que, sendo correspondentes pela reflexão de eixo $\;a\;$, estão a igual distância do pé $\;I_0\;$ da perpendicular $\;I K\;$ em $\;a$:    a recta $\;IK\;$ é solução do problema.
    No caso da nossa construção, também a reta $\;JL\;$ é solução do problema.

3.1.14

Casos de simetria de figuras. Não caso da inversão/reflexão


Chamamos simetria de um conjunto de pontos (ou figura) a qualquer isometria que transforma o conjunto de pontos (ou figura) em si mesma. As isometrias do plano que fixam um conjunto de pontos são as simetrias desse conjunto de pontos. O conjunto das simetrias de uma figura, munido da composição, é um grupo - grupo das simetrias da figura.

  1. Dizemos que o hexágono regular (à esquerda) é uma figura simétrica pela reflexão de eixo (espelho) representado pela reta vermelha. Admite para além desse eixo de simetria, outros cinco. A imagem do hexágono pela reflexão é o hexágono; para cada reflexão são invariantes os pontos do eixo que a define. O ponto de interseção dos eixos de simetria é um centro de simetria: as rotações de n.60º com n inteiro, em torno desse ponto transformam o hexágono em si mesmo; o centro da simetria é invariante para todas as simetrias de rotação; as rotações de n.360º deixam invariantes todos os pontos do hexágono regular. A simetria de meia volta também é considerada como simetria central ou relativa à reflexão em relação ao centro: a cada P da figura corresponde um ponto P' colinear com P e O(centro) tal que OP=OP'
  2. Os triângulos equiláteros da figura II têm 3 eixos de simetria, mas o hexágono (não regular) não. Mas é fácil verificar que esse hexágono tem um centro de simetria - rotação de n.120º, com n inteiro. Claro que estas simetrias de rotação do hexágono II não pode ser considerada uma simetria central no sentido descrito antes para a figura I.

© geometrias, 3 de Janeiro de 2014, Criado com GeoGebra

Notas sobre a inversão (reflexão) que, não sendo isometria do plano, não é simetria de figura do plano:
Dada uma circunferência, por exemplo, haverá alguma inversão (reflexão relativa a uma circunferência) que seja simetria da circunferência? Sabemos que uma circunferência qualquer é imagem de si mesma por inversão relativa a qualquer das suas ortogonais. Mas não é isometria, logo não é uma simetria da circunferência. E qualquer circunferência é inversa de si mesma pela inversão relativamente a si mesma. Mas, mesmo neste caso, em que a restrição da inversão à circunferência de inversão inverte cada ponto em si mesmo, não estamos perante uma simetria já que a inversão não é uma isometria do plano.

5.8.13

Inversão ou reflexão relativamente a uma circunferência


A entrada anterior aborda os resultados que podemos enunciar
  1. Se $C$ e $D$ são inversos relativamente à circunferência de centro $O$ e raio $r$, então $(A,B;C,D)=-1$, em que $[AB]$ é o diâmetro da circunferência de inversão que passa por $C$ e $D$:
    e, reciprocamente, se $(A,B;C,D)=-1$, sendo $[AB]$ um diâmetro de uma circunferência de centro $O$ e raio $r$, então $C$ e $D$ são inversos relativamente a essa circunferência
  2. Se $C$ e $D$ são inversos relativamente a uma circunferência de centro $O$ e raio $r$, então qualquer circunferência que passe por $C$ e $D$ corta ortogonalmente a circunferência de centro $O$ e raio $r$;
    e, reciprocamente, se um diâmetro de uma circunferência de centro $O$ e raio $r$ corta uma circunferência ortogonal a ela em $C$ e $D$, então a $C$ e $D$ são inversos relativamente à circunferência de centro $O$ e raio $r$
A nova construção, que se segue, pretende ilustrar que
Se duas circunferências de centros $O_1$ e $O_2$ se intersetam em dois pontos $C$ e $D$ e cada uma delas é ortogonal a uma terceira de centro $O$, então os pontos $C$ e $D$ são inversos relativamente a essa terceira circunferência de centro $O$.

Na figura podem deslocar $O_i$ livremente no plano. O resultado é válido para circunferências ($O_1$ e $O_2$) que se intersetam e são ortogonais à circunferência de centro $O$ e raio $r$ .
  1. Tome-se a reta $OC$. Na ilustração é aparente que $OC$ passa por $D$.
    De facto, assim terá de ser.
  2. Se $OC$ intersetasse a circunferência de centro em $O_1$ em $D_1\;$, como esta é ortogonal à circunferência de centro $O$, $D_1$ seria inverso de $C$ relativamente à circunferência vermelha de centro em $O$
  3. Do mesmo modo, se pode concluir que a interseção $D_2$ de $OC$ com a circunferência de centro $O_2$, por esta ser ortogonal à circunferência de centro $O$, seria inverso de $C$ relativamente à circunferência de centro $O$.
  4. Sabendo que $C$ e $D$ são pontos de interseção das duas circunferências de centros $O_1$ e $O_2$,
    $D_1$ é o inverso de $C$ e está sobre a reta $OC$ e a circunferência de centro $O_1$
    $D_2$ é inverso $C$ e está sobre a reta $OC$ e sobre a circunferência de centro $O_2$,
    e, finalmente, para cada ponto $C$ há uma só ponto $C'$ sobre $OC$ que é seu inverso relativamente à circunferência de centro $O$, tem de ser $C'=D_1=D_2=D$ único ponto nas circunferências de centro $O_1$, de centro $O_2$ e na reta $OC$.

Foi devido a este resultado que alguns geómetras passaram a referir-se à inversão como a reflexão relativamente a uma círcunferência. O enunciado poderia ser assim:
Se duas circunferências se intersetam e cada uma delas é ortogonal a uma terceira circunferência, então cada um dos pontos de interseção das duas circunferências é a reflexão do outro relativamente à terceira circunferência.
Howard Eves, Fundamentals of Modern Elementary Geometry . Jones and Bartlett Pub. Boston:1992

30.1.10

Um problema e duas resoluções - a reflexão

O processo de resolução de um problema depende sempre dos instrumentos de que dispomos para o fazer e dos conhecimentos que mobilizamos no momento. O problema de transportar (o comprimento de) um segmento dado para outra posição num plano é actualmente resolvido com recurso a isometrias (translações, rotações, reflexões, reflexões deslizantes).
No Livro I, proposição II dos “Elementos de Euclides” é colocado o problema de tirar por um ponto A dado, um segmento de comprimento igual a outro BC dado. Com os conceitos em uso - por dois pontos passa uma recta (régua não graduada) e dados dois pontos BC há pontos que estão distanciados B tanto quanto C de B- circunferência centrada num ponto e a passar por outro-, Euclides resolveu o problema do seguinte modo: Determinou o ponto D, igualmente distanciado de B e de A (intersecção das circunferências centradas em A e em B e de raio AB). Por D e B, fez passar a recta DB e com a circunferência de centro em B e raio BC determinou sobre a recta DB o comprimento BC. Por ser DB igual DA, a circunferência de centro D e raio DB+BC vai determinar sobre AD um ponto que está à distância BC de A. Pode acompanhar essa construção na figura dinâmica que se segue.




Admitindo que continua a não nos ser permitido transportar comprimentos (sem esta restrição o problema seria trivial), os nossos jovens podem, no entanto, compreender mais facilmente a resolução do problema mobilizando os conhecimentos sobre transformações geométricas- isometrias do plano - que permitem determinar segmentos de recta congruentes.
Por exemplo, podem pensar em usar uma reflexão cujo eixo é a mediatriz do segmento de extremos A (para onde queremos transferir o comprimento BC) e um extremo do segmento BC . Na construção que se segue toma-se a reflexão que leva de C para A (e B para B'). O comprimento de [BC] é igual ao comprimento de [B’A].





É claro que esta construção, usando o conceito de recta e circunferência definidas por dois pontos (como fez Euclides) não é mais simples que a original de "Os Elementos". Esta construção exige a construção de uma mediatriz de AC com recurso a duas circunferências e da perpendicular à mediatriz tirada por B com recurso a três circunferências seguida de uma intersecção e uma circunferência para determinar B' equidistante da mediatriz de AC.

29.11.09

Reflexões e rotações <-> reflexões e translações

A composta de duas translações é uma translação, a composta de duas rotações é uma rotação, a composta de duas reflexões não é uma reflexão mas pode ser uma rotação ou uma translação, a composta de uma translação com uma rotação é uma rotação... A composta de uma rotação com uma reflexão pode não ser qualquer das anteriores. Não é. É qualquer coisa de diferente. Pode tentar ver isso procurando eixo de reflexão, centro de rotação ou vector de translação que leve de A para A''. Tente com o exemplo que damos a seguir (dois "clics" seguidos na área de trabalho e abre o geogebra).

Na construção dinâmica, que se segue, mostra-se que uma rotação (que leva de A' para A'') depois de uma reflexão (que leva de A para A') pode dar o mesmo resultado que uma translação seguida de uma reflexão ( a levar de A para A'')... Pode procurar a translação e a reflexão que a segue (ou precede) com esse fim. E pode verificar, desocultando a solução que apresentamos.




10.8.07

Inverter é ver ao espelho. O quê,?

Tomámos uma circunferência de centro em O e raio r. Os inversos dos pontos de uma recta exterior a essa circunferência (inversora, assim lhe chamamos para simplificar) estão todos sobre uma circunferência que passa pelo centro da circunferência inversora. Falávamos de inverso mesmo no sentido do que neutralizaria um número pela multiplicação: a cada P da recta r, associamos o número p = |OP|/r e ao transformado P' de P fica associado um número p' =|OP'|/r=r/|OP|=p-1. Claro que o ponto O a que corresponde |OO|=0 não é inverso de qualquer ponto (ou é inverso do ponto impróprio da recta - no infinito) e não tem inverso na inversão associada à circunferência de centro O (ou é inverso de qualquer ponto impróprio de qualquer recta).
[A inversa de uma recta é uma circunferência com menos um ponto (ou com um buraco). A imagem por inversão associada a uma cirunferência de uma recta acabada (incluindo os pontos impróprios onde ela começa e acaba, no infinito) é uma circunferência.]
Interessante é agora procurar inverter figuras geométricas ou ver as suas imagens num espelho circular. Qual é a imagem de uma recta secante à circunferência inversora? Qual é a imagem de uma cirunferência que não seja concêntrica com a crcunferência inversora de centro O e não passe por O? Qual é a imagem da própria circunferência inversora? Qual é a imagem de uma circunferência concêntrica com outra tomando para espelho uma delas? Qual é a imagem de um segmento de recta? E de um triângulo?
Tantas perguntas? Algumas delas. Cada pessoa pode fazer outras tantas e ver como as respostas fazem quadros surpreendentes e belos. Com que cores queremos pintar o nosso mundo do outro lado do espelho?