Problema: Dadas duas circunferências $\;c_1\;$ e $\;c_2\;$ e um ponto $\;M\;$ determinar um ponto $\;P_1\;$ de $\;c_1\;$ e um ponto $\;P2\;$ de $\;c_2\;$ para os quais $\;M\;$ é o ponto médio de $\;P_1P_2\;$
Este problema está proposto no livro Simetrias e Transformações Geométricas de Eduardo Veloso (p.15).
O autor recomenda que
A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.
Este problema está proposto no livro Simetrias e Transformações Geométricas de Eduardo Veloso (p.15).
O autor recomenda que
- se comece por procurar o lugar geométrico dos pontos $\;B\;$ quando $\;A\;$ percorre $\;c_1\;$ sendo $\;AM=BM\;$, e
- se investigue para que posições de $\;M\;$ há soluções ou não, uma, duas ou infinitas soluções do problema
A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas. Clicando no botão Resolução pode ver a solução do problema.
© geometrias, 29 de Maio de 2014, Criado com GeoGebra
- São dados um ponto $\;M\;$ e duas circunferências $\;c_1 = (O_1), \;c_2=(O_2)\;$
- Se $\;A, \;M, \; B\;$ são colineares e $\;\overrightarrow{AM}=\overrightarrow{MB}\;$, $\;A\;$ e $\;B\;$ são correspondentes por uma transformação de meia volta de centro em $\;M\;$, (ou $\;{\cal{R}}(M, 180^o)\;$ ou $\;{\cal{H}}(M, -1)\;$.
Por isso, quando $\;A\;$ percorre $\;c_1\;$, $\;B\;$ percorre uma circunferência $\;c'_1\;$ que é imagem de $\;(c_1\;$ pela meia volta de centro em $\;M\;$ - No nosso caso, a posição de $\;M\;$ relativamente às circunferências $\;c_1, \;c_2$ é tal que $\;c'_1 . c_2 = \{ P_2,\; Q_2\}\;$. A reta $\;P_2M\;$ interseta $\;c_1\;$ em dois pontos, sendo um deles $\;P_1\;$ o correspondente original de $\;P_2\;$ pela meia volta de centro $\;M\;$: $$\begin{matrix} &{\cal{R}}(M, 180^o)& &\\ c_1&\longrightarrow &c'_1& \\ &&&\;\;\;c'_1.c_2 =\{P_2, \;Q_2\}\\ P_1& \longleftarrow & P_2& \;\;\;(P_1,\;P_2) \in c_1 \times c_2 \; \mbox{ é uma solução}\\ Q_1& \longleftarrow& Q_2& \;\;\;(Q_1,\;Q_2) \in c_1 \times c_2 \; \mbox{ é outra solução}\\ \end{matrix}$$
Sem comentários:
Enviar um comentário