Mostrar mensagens com a etiqueta problemas de construção. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta problemas de construção. Mostrar todas as mensagens

23.4.14

Lista de problemas… já resolvidos, usando transformações

Por várias vezes, apresentámos exemplos de problemas de construção que se resolviam com o recurso às transformações e suas propriedades.
Aqui fica uma lista de enunciados de alguns problemas de construção resolvidos com transformações (de 2009/2010). Se houver algum problema no carregamento das construções (java…), basta avisar os construtores que eles resolvem.
10.11.09 Problemas usando reflexões -1-:
Tomamos uma recta r e dois pontos P e Q de um dos semi-planos determinados por r. Como determinar o ponto N de r, tal que |PN|+|NQ| seja mínimo?
16.11.09 Problema usando reflexões:
De entre todos os triângulos com um dada base e altura a ela relativa, determinar qual deles tem perímetro mínimo.
18.11.09 Problema usando translações
Dados dois pontos P e Q, diferentes, situados entre duas rectas r e s. Qual o caminho mais curto, passando por cada uma das rectas r e s, e ligando P a Q?
20.11.09 Problema usando rotações
Tomem-se três rectas paralelas a, b e c (quaisquer). Determinar um triângulo equilátero ABC que tenha A sobre a, B sobre b e C sobre c.
22.11.09 Problema usando translações e reflexões:
Dadas duas rectas a e b, determinar a circunferência de raio dado que é tangente às duas rectas dadas.
5.12.09 Usando translações:
Construir um quadrilátero de que são dados os comprimentos dos lados e o comprimento de um segmento que une os pontos médios de dois dos lados opostos
5.12.09 Das medianas ao triângulo, com translações
Construir um triângulo de que se conhecem as medianas.
5.12.09 Puig Adam - método das transformações para resolução de problemas
23.12.09 Usando reflexões: Construir um quadrilátero de que são dados os comprimentos dos lados e o comprimento de um segmento que une os pontos médios de dois dos lados opostos
28.12.09 Usando reflexões (II):
Construir um triângulo de que se conhecem dois lados BC e AC e a diferença dos ãngulos a eles opostos é um problema que se resolve se nos lembrarmos que a mediatriz do lado AB em falta é eixo de uma reflexão que leva de A para B
29.12.09 Usando rotações
Dadas duas rectas a e b e um ponto P não incidente em qualquer delas, determinar um quadrado com vértice em P e sobre cada recta a e b um dos dois vértices adjacentes a P
Sugestão do mesmo processo para resolver
  1. Determinar um triângulo com os três vértices sobre três paralelas dadas (já resolvido numa das entradas) ou sobre três circunferências concêntricas
  2. Inscrever um triângulo equilátero num quadrado de modo que tenham um vértice em comum
  3. Inscrever num paralelogramo um rectângulo cujas diagonais façam um dado ângulo
2.1.10 Usando homotetias(I)
Inscrever num triângulo ABC um quadrado que tenha um dos lados sobre o lado maior do triângulo
12.1.10 Ainda usando rotações - Geometria
Determinar um triângulo equilátero com os vértices sobre circunferências concêntricas
30.1.10 Um problema e duas resoluções - a reflexão
Tirar por um ponto A dado, um segmento de comprimento igual a outro BC dado

Nas próximas entradas vamos enunciar e resolver problemas de construção geométrica propostos por Howard Eves (em Fundamentals of Modern Geometry) para usar o que ele chama método das transformações (como o fez Puig Adam, etc)

16.4.14

Transformações geométricas do plano: generalidades.

Ao longo dos anos, fomos abordando e usando transformações geométricas do plano, em resposta a necessidades de estudo circunstanciais. Como agora vai acontecer, de resto.
Nas próximas entradas, vamos resolver problemas de construção geométrica com recurso a transformações geométricas ou usando o método das transformações, como escreve Howard Eves em Fundamentals of Modern Elementary Geometry já referido em várias entradas.
Repetidamente, Eduardo Veloso tem chamado a atenção para a falta das transformações geométricas na formação dos professores e no ensino, considerando que "as transformações são apenas tocadas ao de leve no ensino básico e completamente ignoradas no ensino secundário" (Educação Matemática nº 79 de 2004). Nessa reflexão publicada, sob o título "Cinco pontos, um problema e cinco soluções", Eduardo Veloso tenta uma explicação para não utilizarmos as transformações geométricas para a demonstração e/ou resolução de problemas de construção. Já no livro "Geometrias - Temas Actuais", Eduardo Veloso refere as diferentes perspectivas, desde a geometria sintética, passando pelo método das coordenadas (geometria analítica) até ao que designa como método das transformações geométricas (perspetiva funcional da geometria) para a resolução de problemas geométricos. Ao lado dessas perspectivas, Eduardo Veloso acrescenta a perspectiva vectorial (autónoma da geometria analitica). Recorrendo aos diversos métodos e perspectivas, apresenta diferentes resoluções de um mesmo problema e diferentes demonstrações de um mesmo teorema.
Mais recentemente, no seu livro "Simetrias e Transformações Geométricas", Eduardo Veloso volta a insistir no uso das transformações geométricas na resolução de problemas de construção geométrica, apresentando diversas propostas de trabalho nesse sentido.

Transformações geométricas do plano: generalidades

Definições e notações:
  1. Seja $f$ uma correspondência que associa a cada ponto $P$ do plano (ou ${\rm I\kern-.17em R}^2 $) um e um só ponto $P' =f(P)$ do plano (ou ${\rm I\kern-.17em R}^2 $): $$P \neq Q \Rightarrow f(P) \neq f(Q)$$ $$ \forall Q, \; \exists P :\; f(P)=Q$$ Chamamos transformação geométrica do plano a uma correspondência $f$, biunívoca, entre os pontos do plano, assim definida.
  2. Se $f$ e $g$ são duas transformações geométricas do plano, a correspondência que resulta de as aplicarmos sucessivamente, $g$ após $f$, é obviamente uma transformação geométrica. Escrevemos $$\begin{matrix} &g&&f&\\ P& \longmapsto & Q&\longmapsto R \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \begin{matrix} &g\circ f& \\ P \:\:\:\: &\longmapsto & R \end{matrix} $$ $$ g\circ f(P) = g(f(P)) = g(Q) = R$$. Chamamos composição (ou produto) de $f$ com $g$ à transformação geométrica $g\circ f$. Claro que, se $f$ e $g$ são transformações geométricas, $f\circ g$ também é transformação geométrica.
  3. Se $f$ é uma transformação geométrica do plano tal que $$\begin{matrix} &f&\\ P& \longmapsto & Q \end{matrix}, $$ também é transformação geométrica a correspondência $f'$ tal que $$\begin{matrix} &f'&\\ Q& \longmapsto & P \end{matrix}$$ a que chamamos inversa de $f$ e representamos por $f^{-1}$.
  4. Há uma transformação geométrica a que chamamos identidade do plano, que faz corresponder a si mesmo cada ponto $P$ do plano $$\begin{matrix} &id&\\ P& \longmapsto & P \end{matrix} $$
  5. É claro que $f^{-1}(f(P))=f^{-1}(Q)=P\; \;\;$ e $\; \;\;f(f^{-1}(Q)) = f(P) =Q$. E escrevemos $$\begin{matrix} &f&&f^{-1}&\\ Q& \longmapsto & P&\longmapsto Q \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f\circ f^{-1}=id&\\ Q& \:\:\:\:\longmapsto & Q \end{matrix} $$ $$\begin{matrix} &f^{-1}&&f&\\ P& \longmapsto & Q&\longmapsto P \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f^{-1}\circ f=id&\\ P& \:\:\:\:\longmapsto & P \end{matrix} $$
  6. O conjunto das transformações geométricas munido com a operação binária composição (ou produto) é um grupo

13.4.14

Usando lugares geométricos para resolver problemas de construção (18)

Problema: Determinar os pontos para os quais as suas distâncias a duas retas dadas têm uma dada soma.

A construção a seguir ilustra a determinação desse lugar geométrico.
  1. Dados (a azul): duas reta $\;a, \;b\;$ e um segmento que representa a soma das distâncias $\;s=d_a+d_b\;$ em que $\;d_a\;$ e $\;d_b\;$ representam a distância a $\;a\;$ e a $\;b\;$ respetivamente.
  2. Usando o 2º lugar geométrico da lista,
    • os pontos que estão à distância $\;d_a+d_b\;$ de $\;b\;$ consiste em duas retas paralelas (finas a azul) a $\;b\;$ e os pontos de interseção destas retas com a reta $\;a\;$ são os pontos $\;A, \;A'\;$ relacionados por uma meia volta de centro $\;O = a.b\;$
      $\;A, \;A'\;$ são soluções do problema.
    • os pontos que estão à distância $\;d_a+d_b\;$ de $\;a\;$ consiste em duas retas paralelas (finas a azul) a $\;a\;$ e os pontos de interseção destas retas com a reta $\;b\;$ são os pontos $\;B, \;B'\;$ relacionados por uma meia volta de centro $\;O \;(a.b)\;$
      $\;B, \;B'\;$ são soluções do problema.


  3. © geometrias, 12 de Abril de 2014, Criado com GeoGebra


  4. Tomamos dois segmentos $\;d_a\;$ (violeta) e $\;d_b\;$ (castanho) nas condições do problema. E, usando o 2º lugar geométrico da lista,
    • O lugar geométrico dos pontos que estão à distância $\;d_a\;$ de $\;a\;$ é constituído por duas retas $\;a', \;a''\;$ (violeta) paralelas a $\;a\;$
    • O lugar geométrico dos pontos que estão à distância $\;d_b\;$ de $\;b\;$ é constituído por duas retas $\;b', \;b''\;$ (castanho) paralelas a $\;b\;$
    • Os pontos de interseção de cada par destas retas estão simultaneamente à distância $\;d_a\;$ de $\;a\;$ e à distância $\;d_b\;$ de $\;b\;$ de soma dada, a saber: $\;P (a'.b'), \;P' (a''.b''), \;Q (a''.b'), \;Q'(a'.b'')\;$
    • $\;d_a, \;d_b\;$ podem tomar os valores de $\;0\;$ a $\;s=d_a+d_b\;$ e
      quando $\;d_a=0\;$, $\;d_b =s$ ($\;P=A, \;P'=A',\;Q=A, \;Q'=A'$);
      quando $\;d_a=s\;$, $\;d_b =0$ ($\;P=B', \;P'=B, \;Q=B, \;Q'=B'\;$)
    • Para cada par $\;(d_a, d_b)\;$, nas condições já descritas, os pontos $\;P, \;Q, \;P', \;Q'\;$ são os vértices de ângulos de lados paralelos a $\;a\;$ e a $\;b\;$. A variação dos valores de $\;d_a\;$ e $\;d_b= \;s-d_a\;$ corresponde tão só à passagem de ângulos para outros iguais (lados paralelos) em que a variação crescente de uma das distâncias num sentido da perpendicular a $\;a\;$ (ou a $\;b\;$) é compensada pela variação decrescente igual no sentido da perpendicular a $\;b\;$ (ou a $\;a\;$), como é óbvio, já que $\; d_a+d_b=s \Leftrightarrow d_a +\delta + d_b -\delta=s \;$
      Ou seja, qualquer variação de $\;d_a\;$ (e correspondente variação de $\;d_b \;$) equivale a passar de um ângulo para outro de igual amplitude e com a mesma bissetriz.
      Os pontos $\;P\;$ e $\;Q \;$ do lugar geométrico estarão obrigatoriamente sobre as bissetrizes (perpendiculares) dos quatro ângulos formados pela reta $\;a\;$ com a reta paralela a $\;b\;$ à distância $\;s\;$ de $\;b\;$, etc
  5. O lugar geométrico dos pontos cujas distâncias a duas retas dadas têm uma soma dada é o retângulo $\;ABA'B'\;$ cujas diagonais $\;AA'\;$ e $\;BB'\;$$ são segmentos das retas dadas .

Clicando sobre o botão de animação em baixo à esquerda, pode acompanhar os efeitos da variação das distâncias às retas. Também pode alterar os dados: tanto a soma dada como as posições das retas

5.4.14

Usando lugares geométricos para resolver problemas de construção (17a')

Se fosse este outro o enunciado do
Problema: Determinar o lugar geométrico dos pontos a partir dos quais se vêem segundo ângulos iguais dois segmentos $\;AB\;$ e $\;BC\;$ de uma dada reta $\;a$

A construção abaixo ilustra a resolução do problema proposto, passo a passo. Pode observar os passos da construção deslocando o cursor $\;\fbox{n=1,..., 6}\;$
  1. Dados (a azul): uma reta $\;a\;$ e três pontos $\;A, \;B, \;C\;$ sobre ela.
  2. Os dois primeiros passos n=2 e n=3 da construção dos pontos $\;H\;$ e $\;H'\;$ pontos a partir dos quais se vêem os dois segmentos $\;AB\;$ e $\;BC\;$ segundo um mesmo ângulo $\;\alpha\;$ já foi feita na entrada anterior.

    © geometrias, 5 de Abril de 2014, Criado com GeoGebra


  3. Esse ponto $\;H\;$ (ou $\;H'\;$) é um ponto a partir do qual se tiram retas para $\;A\;$ e $\;B\;$ por um lado, e para $\;B\;$ e $\;C\;$ por outro, tais que $\;A\hat{H}B = B\hat{H}C =\alpha\;$
  4. Assim, podemos dizer que do triângulo $\;AHC\;$, $\;HB\;$ é a bissetriz interna do ângulo $\;\hat{H}\;$ e a perpendicular a $\;HB\;$ tirada por $\;H\;$ é a bissetriz externa, cujo pé sobre a reta $\;AC\;$ chamamos $\;E\;$. O pé da bissetriz interna de $\;\hat{H}\;$ sobre $\;a\;$ é $\;B\;$
  5. Fixados $\;A,\;B,\;C$, o círculo de diâmetro $\;BE\;$ - círculo de Apolónio do triângulo $\;AHC\;$, mantém-se o mesmo para todos os valores de $\;\alpha\;$ ou para todos pontos $\;H\;$.
    Pode verificar isso, movendo $\;D\;$ que é o mesmo que fazer variar as amplitudes $;\alpha\;$ e observando como $\;H\;$ percorre a circunferência de diâmetro $\;BE\;$ que se mantém a mesma (independentemente de $\;H$) já que o par de pontos $\;I, \;E\;$ separa harmonicamente o par de pontos $\;A, \;D\;$
  6. O lugar geométrico dos pontos $\;P\;$ tais que $\;A\hat{P}B = B\hat{P}C\;$ é uma circunferência de Apolónio relativa a um triângulo $\;A\hat{H}C\;$ de que $\;HB\;$ seja a bissetriz interna.

Podemos variar o ângulo $\;\alpha\;$ e as posições de $\;A\;$, $\;B\;$ e $\;C\;$

3.4.14

Usando lugares geométricos para resolver problemas de construção (17a)

Problema: Determinar um ponto a partir do qual se vêem segundo ângulos iguais dois segmentos $\;AB\;$ e $\;BC\;$ de uma dada reta $\;a$

A construção abaixo ilustra a resolução do problema proposto
  1. Dados(a azul): uma reta $\;a\;$ e três pontos $\;A, \;B, \;C\;$ sobre ela.
  2. Tomemos um ângulo $\;\alpha = C\hat{A}D\;$. Os pontos $\;P\;$ a partir dos quais se traçam retas $\;PA\;$ para $\;A\;$ e $\;PB\;$ para $\;B\;$ sendo $\;A\hat{P}B =\alpha\;$ estão sobre dois arcos de circunferências congruentes dos quais $\;AB\;$ é uma corda comum (5º lugar geométrico da lista).

    © geometrias, 2 de Abril de 2014, Criado com GeoGebra


  3. Do mesmo modo se determina o lugar geométrico dos pontos $\;P\;$ dos pontos tais que $\;B\hat{P}C=\alpha\;$.
  4. No caso da nossa construção, para o $\;alpha\;$ inicialmente considerado, há dois pontos $\;H, \;H'\;$ que satisfazem as condições do problema; são as interseções dos lugares geométricos (5º da lista) relativos a $\;\alpha\;$ e a $\;AB\;$ um deles e a $\;BC\;$ o outro.
  5. Claro que o segmento $\;AB\;$ e $\;BC\;$ podem ser vistos segundo ângulos iguais de outra amplitude.

Podemos variar o ângulo $\;\alpha\;$ e as posições de $\;A\;$, $\;B\;$ e $\;C\;$

28.3.14

Usando lugares geométricos para resolver problemas de construção (15)

Problema: De um quadrilátero $\;ABCD\;$, inscritível numa circunferência, conhecemos um vértice $\;A$, a amplitude do ângulo $\;\angle Â\;$ e os comprimentos de um dos lados adjacentes ao ângulo $\;AB\;$ e das diagonais $\;AC, \;BD$.    Determinar os restantes vértices $\;B, \;C, \;D\;$ desse quadrilátero.

A construção abaixo ilustra a resolução do problema proposto
  1. Dados (a azul): um ângulo $\;\alpha\;$ de amplitude igual à do ângulo $\; \angle BÂD\;$ um segmento $\;A_0B_0\;$ de comprimento igual ao lado $\;AB\;$; um segmento $\;A_0C_0\;$ de comprimento igual à diagonal $\;AC\;$; um segmento $\;B_0D_0\;$ de comprimento igual à diagonal $\;BD\;$
  2. O vértice $\;B\;$ é um dos pontos que está à distância $\;A_0B_0\;$ do vértice $\;A\;$ (1º lugar geométrico da lista). Tomemos um ponto sobre a circunferência $\;(A, \;A_0B_0)\;$ e designemo-lo por $\;B\;$.

    © geometrias, 28 de Março de 2014, Criado com GeoGebra


  3. Os pontos $\;B, \;A\;$ definem a reta $\;AB\;$ e podemos construir o ângulo de vértice $\;A\;$ e lados $\;AB, \;AD\;$
    O ponto $\;D\;$ está no segundo lado do ângulo $\;\angle \alpha\;$ e à distância $\;B_0D_0\;$ de $\;B\;$, ou seja, na interseção da circunferência $\;(B, \;B_0D_0)\;$ com o segundo lado do ângulo $\;\angle BÂD\;$
  4. Há um só ponto equidistante dos pontos $\;A, \;B, \;D\;$ (interseção das mediatrizes dos segmentos $\;AB\;$ e $\;BD\;$ - 3º lugar geométrico da lista) e por isso há uma única circunferência a passar por $\;A, \;B, \;D\;$ - 1º lugar geométrico da lista dos pontos equidistantes a um dado ponto.
    Assim, sendo inscritível o quadrilátero terá os seus quatro vértices sobre a circunferência determinada por $\;A, \;B, \;D\;$, a castanho na figura.
    $\;C\;$ está à distância $\;A_0C_0\;$ de $\;A\;$, ou seja na circunferência $\;(A, \;A_0C_0)\;$ (1º lugar geométrico da lista)
    No caso da nossa figura, $\;C\;$ é um dos dois pontos de interseção das circunferências $\;(A, \;B, \;D)\;$ e $\;(A, \;A_0C_0)\;$

Podemos variar a amplitude $\;\alpha\;$ e os comprimentos $\;A_0B_0\;$ $\;A_0C_0\;$ e $\;B_0D_0\;$

27.3.14

Usando lugares geométricos para resolver problemas de construção(14)

Problema: Determinar uma tangente a uma dada circunferência cortada por uma reta dada a uma dada distância do ponto de tangência.

Na construção a seguir, apresentamos os passos da resolução do problema de construção.

Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.

  1. Dados (a azul): uma reta $\;a\;$, um segmento $\;d\;$, uma circunferência de centro $\;O\;$ e raio $\;r\;$

    Resolver este problema resume-se a determinar um ponto $\;P\;$ da reta $\;a\;$ de que se tire uma tangente $\;t\;$ a $\;(O, r)\;$ sendo $\;PT = d\;$, em que T é o seu ponto de tangência.
  2. Um ponto $\;P\;$ de $\;a\;$ que satisfaz as condições requeridas é vértice de um triângulo $\;PTO\;$ retângulo em $\;T\;$ em que os catetos são $\;PT=d\;$ e $\;TO = r\;$ conhecidos e a hipotenusa é $\;OP\;$
    Para determinar $\;OP =h\;$ basta tomar o triângulo retângulo de catetos $\;r, \; d\;$.

    © geometrias, 27 de Março de 2014, Criado com GeoGebra


  3. E o ponto $\;P\;$, se existir fica determinado pela interseção de $\;a\;$ com a circunferência $\;(O, h)\;$, No caso da nossa figura ficam determinados dois pontos $\;P.\;Q\;$ : $\;PO = QO = h$, sendo $\;h^2=r^2+d^2\;$
  4. Os pontos $\;T\;$ de tangência encontarm-se na interseção de $\;(O, r)\;$ com a circunferência de diâmetro $\;OP=h\;$ (caso particular do 5º ou do 9º lugar geométrico da lista). Na nossa figura, para o ponto $\;P\;$ há duas tangentes $\;t_1\;$ e $\;t_2\;$, para as quais $\;PT_1 = PT_2 = d\;$, como queríamos.
  5. Outras soluções, no nosso caso, são as tangentes a $\;(O, \;r)\;$ tiradas por $\;Q\;$

Podemos variar os comprimentos $\;d\;$ $\;r\;$ e as posições relativas das circunferência e reta dados. Verificamos que a existência de soluções depende da relação entre o comprimento de $\;d\;$ e as posições relativas de $\;a\;$ e $ \;(O,r)\;$

8.3.14

Usando lugares geométricos para resolver problemas de construção (8)


Problema:Construir um triângulo de que se conhecem um ângulo, o lado a ele oposto e a mediana relativa ao lado conhecido.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Dados: dois pontos $\;B\;C\;$,segmento $\;a=BC\;$,comprimento da mediana $\;m_{BC}$, ângulo de amplitude $\;\alpha\;$.
2.
A resolução do problema resume-se a encontrar pontos $\;A\;$ , 3º vértice do triângulo $\;ABC\;$ de que se conhecem $\;B,\;C\;$, sabendo que $\;\angle B\hat{A}C\;$ terá de ser igual a $\;\alpha\;$ e $\;AM_{BC}=m_{BC}\;$
  1. O 5º lugar geométrico da lista diz-nos que os pontos, dos quais partem retas para os extremos $\;B,\;C\;$ de um segmento fazendo um ângulo $\;\alpha\;$, estão sobre dois arcos congruentes de duas circunferências com uma corda - $\;a=BC\;$ - comum.
  2. O lugar geométrico dos pontos à distância $\; m_{BC}\;$ de $\;M_{BC}\;$, ponto médio de $\;BC\;$, estão na circunferência de centro $\;M_{BC};$ e raio $\; m_{BC}\;$ (1º lugar geométrico da lista)


© geometrias, 8 de Março de 2014, Criado com GeoGebra


3.
A interseção dos lugares geométricos (5º e 1º, para os dados do problema) são os pontos $\;A, \; \; A_1 ,\; A_2 ,\; A_3\;$.
Há, em consequência, quatro triângulos $\;ABC, \; \; A_1 BC ,\; A_2 BC,\; A_3 BC\;$, a vermelho na figura, que satisfazem as condições requeridas

6.3.14

Usando lugares geométricos para resolver problemas de construção (6)


Problema: Construir uma circunferência tangente a duas retas paralelas dadas e a passar por um ponto dado.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Temos inicialmente duas retas paralelas $\;a,\;b\;$ e um ponto $\;P\;$ dados .
2.
A resolução do problema resume-se a encontrar pontos $\;O\;$ a igual distância das retas paralelas e do ponto $\;P\;$.
  1. O 2º lugar geométrico da lista diz-nos que os pontos equidistantes de uma reta $\;m\;$ estão sobre retas paralelas a ela. Assim, é óbvio que o lugar geométrico dos pontos $\;M\;$ equidistantes das retas $\;a, \; b\;$ à distãncia $\;d\;$ uma da outra, será a reta a elas paralela e a meia distância $\; \displaystyle \frac{d}{2}\;$ entre $\;a\;$ e $\;b\;$. Os pontos $\;O\;$ procurados estão, por isso, sobre $\;m\;$.
  2. O lugar geométrico dos pontos à dstância $\; \displaystyle \frac{d}{2}\;$ de $\;P\;$ estão na circunferência de centro $\;P\;$ e raio $\; \displaystyle \frac{d}{2}\;$ (1º lugar geométrico da lista)


© geometrias, 6 de Março de 2014, Criado com GeoGebra


3.
A interseção dos lugares geométricos (1º e 2º, para os dados do problema) são os pontos $\;O_1 \;\mbox{e} \; O_2 \;$ Há, em consequência, duas circunferências de raio $\; \displaystyle \frac{d}{2}\;$ e centros $\;O_1 \;\mbox{e}\; O_2 \;$ que são soluções do problema.

12.1.14

Instrumentos euclidianos


As próximas entradas ilustrarão o uso dos instrumentos e métodos de construção euclidianos.
No Livro I dos Elementos, Euclides dá as seguintes definições:

I.Ponto é o, que não tem partes, ou o, que não tem grandeza alguma.
II. Linha é o, que tem comprimento sem largura.
III. As extremidades da linha são pontos.
IV. Linha recta é aquella, que está posta egualmente entre as suas extremidades.
...
XV. Círculo é uma figura plana, fechada por uma só linha, a qual se chama circumferencia: de maneira que todas as linhas rectas, que de um certo ponto existente no meio da figura, se conduzem para a circumferencia, são eguais entre si


e, mais adiante, apresenta-nos os seguintes postulados

I. Pede-se como cousa pessoal, que se tire de um ponto qualquer para outro qualquer ponto uma linha recta
II.E que uma linha recta determinada se continue em direitura de si mesma, até onde seja necessário.
III. E que com qualquer centro e qualquer intervallo se descreva um círculo

Estes postulados garantem todas as construções primitivas com as quais todas as construções dos Elementos de Euclides se podem compor. Constituem-se em regras do jogo das construções de Euclides, restringindo todas as construções às que podem ser feitas:com instrumentos "euclideanos": uma régua de arestas para traçar tanto quanto o desejemos uma reta determinada por dois pontos; um compasso que nos permite determinar uma circunferência de um dado centro e passando por um dado ponto.