Ao longo dos anos, fomos abordando e usando transformações geométricas do plano, em resposta a necessidades de estudo circunstanciais. Como agora vai acontecer, de resto.
Nas próximas entradas, vamos resolver problemas de construção geométrica com recurso a transformações geométricas ou usando o método das transformações, como escreve Howard Eves em Fundamentals of Modern Elementary Geometry já referido em várias entradas.
Repetidamente, Eduardo Veloso tem chamado a atenção para a falta das transformações geométricas na formação dos professores e no ensino, considerando que "as transformações são apenas tocadas ao de leve no ensino básico e completamente ignoradas no ensino secundário" (Educação Matemática nº 79 de 2004). Nessa reflexão publicada, sob o título "Cinco pontos, um problema e cinco soluções", Eduardo Veloso tenta uma explicação para não utilizarmos as transformações geométricas para a demonstração e/ou resolução de problemas de construção. Já no livro "Geometrias - Temas Actuais", Eduardo Veloso refere as diferentes perspectivas, desde a geometria sintética, passando pelo método das coordenadas (geometria analítica) até ao que designa como método das transformações geométricas (perspetiva funcional da geometria) para a resolução de problemas geométricos. Ao lado dessas perspectivas, Eduardo Veloso acrescenta a perspectiva vectorial (autónoma da geometria analitica). Recorrendo aos diversos métodos e perspectivas, apresenta diferentes resoluções de um mesmo problema e diferentes demonstrações de um mesmo teorema.
Mais recentemente, no seu livro "Simetrias e Transformações Geométricas", Eduardo Veloso volta a insistir no uso das transformações geométricas na resolução de problemas de construção geométrica, apresentando diversas propostas de trabalho nesse sentido.
Nas próximas entradas, vamos resolver problemas de construção geométrica com recurso a transformações geométricas ou usando o método das transformações, como escreve Howard Eves em Fundamentals of Modern Elementary Geometry já referido em várias entradas.
Repetidamente, Eduardo Veloso tem chamado a atenção para a falta das transformações geométricas na formação dos professores e no ensino, considerando que "as transformações são apenas tocadas ao de leve no ensino básico e completamente ignoradas no ensino secundário" (Educação Matemática nº 79 de 2004). Nessa reflexão publicada, sob o título "Cinco pontos, um problema e cinco soluções", Eduardo Veloso tenta uma explicação para não utilizarmos as transformações geométricas para a demonstração e/ou resolução de problemas de construção. Já no livro "Geometrias - Temas Actuais", Eduardo Veloso refere as diferentes perspectivas, desde a geometria sintética, passando pelo método das coordenadas (geometria analítica) até ao que designa como método das transformações geométricas (perspetiva funcional da geometria) para a resolução de problemas geométricos. Ao lado dessas perspectivas, Eduardo Veloso acrescenta a perspectiva vectorial (autónoma da geometria analitica). Recorrendo aos diversos métodos e perspectivas, apresenta diferentes resoluções de um mesmo problema e diferentes demonstrações de um mesmo teorema.
Mais recentemente, no seu livro "Simetrias e Transformações Geométricas", Eduardo Veloso volta a insistir no uso das transformações geométricas na resolução de problemas de construção geométrica, apresentando diversas propostas de trabalho nesse sentido.
Transformações geométricas do plano: generalidades
Definições e notações:
- Seja $f$ uma correspondência que associa a cada ponto $P$ do plano (ou ${\rm I\kern-.17em R}^2 $) um e um só ponto $P' =f(P)$ do plano (ou ${\rm I\kern-.17em R}^2 $): $$P \neq Q \Rightarrow f(P) \neq f(Q)$$ $$ \forall Q, \; \exists P :\; f(P)=Q$$ Chamamos transformação geométrica do plano a uma correspondência $f$, biunívoca, entre os pontos do plano, assim definida.
- Se $f$ e $g$ são duas transformações geométricas do plano, a correspondência que resulta de as aplicarmos sucessivamente, $g$ após $f$, é obviamente uma transformação geométrica. Escrevemos $$\begin{matrix} &g&&f&\\ P& \longmapsto & Q&\longmapsto R \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \begin{matrix} &g\circ f& \\ P \:\:\:\: &\longmapsto & R \end{matrix} $$ $$ g\circ f(P) = g(f(P)) = g(Q) = R$$. Chamamos composição (ou produto) de $f$ com $g$ à transformação geométrica $g\circ f$. Claro que, se $f$ e $g$ são transformações geométricas, $f\circ g$ também é transformação geométrica.
- Se $f$ é uma transformação geométrica do plano tal que $$\begin{matrix} &f&\\ P& \longmapsto & Q \end{matrix}, $$ também é transformação geométrica a correspondência $f'$ tal que $$\begin{matrix} &f'&\\ Q& \longmapsto & P \end{matrix}$$ a que chamamos inversa de $f$ e representamos por $f^{-1}$.
- Há uma transformação geométrica a que chamamos identidade do plano, que faz corresponder a si mesmo cada ponto $P$ do plano $$\begin{matrix} &id&\\ P& \longmapsto & P \end{matrix} $$
- É claro que $f^{-1}(f(P))=f^{-1}(Q)=P\; \;\;$ e $\; \;\;f(f^{-1}(Q)) = f(P) =Q$. E escrevemos $$\begin{matrix} &f&&f^{-1}&\\ Q& \longmapsto & P&\longmapsto Q \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f\circ f^{-1}=id&\\ Q& \:\:\:\:\longmapsto & Q \end{matrix} $$ $$\begin{matrix} &f^{-1}&&f&\\ P& \longmapsto & Q&\longmapsto P \end{matrix} \:\:\:\: \mbox{ou} \:\:\:\: \:\:\:\:\begin{matrix} &f^{-1}\circ f=id&\\ P& \:\:\:\:\longmapsto & P \end{matrix} $$
- O conjunto das transformações geométricas munido com a operação binária composição (ou produto) é um grupo