[A.A.F.]
Mostrar mensagens com a etiqueta involução. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta involução. Mostrar todas as mensagens
23.7.07
Involução e parábola
Ainda prosseguindo na saga das involuções, Aurélio Fernandes apresentou uma construção com parábolas. Toma-se um quadrilátero inscrito na parábola (pode fazer variar o quadrilátero deslocando os seus vértices sobre a parábola). Sobre uma recta que corte as rectas contendo os lados e diagonais do quadrilátero, ficam determinados pares em involução. Estão determinados o centro O da involução bem como os seus pontos duplos M e N. Também pode fazer variar a parábola ou a recta que corta os lados do quadrilátero, deslocando os pontos em (x).
[A.A.F.]
[A.A.F.]
13.7.07
Triângulo, cónica e involução
Tome-se o triângulo [ABC] e uma cónica tangente aos lados AB e AC em B e em C. Os pares de pontos de intersecção de r com as rectas AB e AC - (P,P') - e com a cónica -(Q,Q')- estão em involução. Utilizando a régua, determine um ponto duplo dessa involução.
[A.A.M.]
Originalmente, com recurso à aplicação ZuL(CaR)- R. Grothmann, esta publicação dava um enunciado de problema de construção e deixava aberta uma janela dinâmica para permitir ao observador interessado que, com as ferramentas adequadas disponíveis, resolvesse o problema e confirmasse a validade das suas escolhas e resultados. Para o mesmo efeito recorremos à aplicação Cinderella (J.Richter-Geberrt, Ul. Kortenkamp) em algumas iniciativas.
Nestas tentativas de recuperar as imagens (ilustrações dinâmicas) para serem visualizadas por quem visitasse e visite este BloGeometrias repositório das tentativas de estudo (construções) de António Aurélio Fernandes, Arsélio Martins e Mariana Sacchetti.
[A.A.M.]
Originalmente, com recurso à aplicação ZuL(CaR)- R. Grothmann, esta publicação dava um enunciado de problema de construção e deixava aberta uma janela dinâmica para permitir ao observador interessado que, com as ferramentas adequadas disponíveis, resolvesse o problema e confirmasse a validade das suas escolhas e resultados. Para o mesmo efeito recorremos à aplicação Cinderella (J.Richter-Geberrt, Ul. Kortenkamp) em algumas iniciativas.
Nestas tentativas de recuperar as imagens (ilustrações dinâmicas) para serem visualizadas por quem visitasse e visite este BloGeometrias repositório das tentativas de estudo (construções) de António Aurélio Fernandes, Arsélio Martins e Mariana Sacchetti.
10.7.07
Teorema de Desargues
Dada uma cónica e um quadrivértice nela inscrito, qualquer secante à cónica que não passe por vértices, corta a cónica e os lados opostos do quadrivértice em pares de pontos de uma mesma involução.
[A.A.F.]
Pode deslocar os vértices sobre a cónica.
[A.A.F.]
Pode deslocar os vértices sobre a cónica.
9.7.07
Involução pelos pontos duplos
Determinar o segundo elemento do par (A,A') em involução de que P e Q são pontos duplos.
2.7.07
Diâmetros conjugados da elipse e involução
O conjunto de pares de diâmetros conjugados de uma cónica formam um feixe em involução cujo vértice é o centro C da cónica.
Na construção que se segue, os diâmetros conjugados da elipse intersectam uma recta r qualquer (pode fazer variar r, deslocando P) em pares de pontos em involução. Pode deslocar qualquer dos pontos asssinalados por (X), fazendo variar a cónica e os seus diãmetros conjugados).
[A.A.F.]
No caso da elipse não existem elementos duplos (qualquer circunferência de corda AA’ ou BB’, etc contém O no seu interior, logo não é possível traçar por O tangentes a essas circunferências) ; um ponto duplo da involução corresponderia a uma recta dupla no feixe de centro C que teria de ser tangente à conica. A involução elíptica não admite pontos duplos.
Na construção que se segue, os diâmetros conjugados da elipse intersectam uma recta r qualquer (pode fazer variar r, deslocando P) em pares de pontos em involução. Pode deslocar qualquer dos pontos asssinalados por (X), fazendo variar a cónica e os seus diãmetros conjugados).
[A.A.F.]
No caso da elipse não existem elementos duplos (qualquer circunferência de corda AA’ ou BB’, etc contém O no seu interior, logo não é possível traçar por O tangentes a essas circunferências) ; um ponto duplo da involução corresponderia a uma recta dupla no feixe de centro C que teria de ser tangente à conica. A involução elíptica não admite pontos duplos.
22.6.07
Involução
Mantemos o texto original que acompanhava um exercício interactivo ou algo parecido que nos deixou para trás. Aqui vamos apresentar um exemplo de transformação geométrica, a involução a fazer corresponder a cada ponto P de uma reta r definida por dois pontos dados um outro ponto P' da mesma reta tal que para um ponto O, centro da involução, PO.OP' é invariante.
António Aurélio Fernandes não descansa. Por força da sua saudável teimosia, andamos a procurar a melhor abordagem a algumas transformações geométricas afastadas dos programas escolares.
Hoje apresentamos uma transformação que é muitas vezes usada, com vantagem, na resolução de problemas de régua e compasso envolvendo cónicas. Nunca sabemos se o fazemos bem. Mas aqui fica uma tentativa que, depois de todas as voltas acabou praticamente na forma da sugestão inicial de António Aurélio Fernandes. A vida é feita de derrotas... para uns e vitórias... para outros. Mais coisa menos coisa.
Na construção que se segue, verá que para cada recta r definida por dois pontos R e S, a cada ponto P de r corresponde um ponto P' tal que |OP|.|OP'|=k. Deslocando P sobre r verá que esse produto é invariante qualquer que seja o ponto P e correspondente P'.
[A.A.M]
A esta aplicação que faz corresponder a cada ponto P de r um outro ponto P' da mesma recta, de tal modo que |OP|.|OP'|=k, chamamos involução de centro O e constante k.
Deslocando R ou S, obterá nova recta e, logo, um novo centro O e uma nova constante k. Poderá mover C e confirmará que a cada ponto P corresponderá um ponto P' mantendo-se invariante (para cada recta RS) o produto |OP|.|OP'|.
É muito interessante e potente este resultado. Muitas perguntas, muitos problemas são sugeridos imediatamente pela definição. Por exemplo, para cada recta e para cada constante qual o centro da involução?
Porque será que aquele produto é constante, quando P varia sobre a recta? É disso que vamos tratar, dando exemplos de involuções conhecidas...(?)
A ilustração do caso presente - involução retangular (∠ PVP'= ∠ AVA' são retos e ∠ VOP também é reto)- agora apresentada é muito esclarecedora. Foi dedicada ao único bisavô deste projecto, a saber, António Aurélio Fernandes.
António Aurélio Fernandes não descansa. Por força da sua saudável teimosia, andamos a procurar a melhor abordagem a algumas transformações geométricas afastadas dos programas escolares.
Hoje apresentamos uma transformação que é muitas vezes usada, com vantagem, na resolução de problemas de régua e compasso envolvendo cónicas. Nunca sabemos se o fazemos bem. Mas aqui fica uma tentativa que, depois de todas as voltas acabou praticamente na forma da sugestão inicial de António Aurélio Fernandes. A vida é feita de derrotas... para uns e vitórias... para outros. Mais coisa menos coisa.
Na construção que se segue, verá que para cada recta r definida por dois pontos R e S, a cada ponto P de r corresponde um ponto P' tal que |OP|.|OP'|=k. Deslocando P sobre r verá que esse produto é invariante qualquer que seja o ponto P e correspondente P'.
[A.A.M]
A esta aplicação que faz corresponder a cada ponto P de r um outro ponto P' da mesma recta, de tal modo que |OP|.|OP'|=k, chamamos involução de centro O e constante k.
Deslocando R ou S, obterá nova recta e, logo, um novo centro O e uma nova constante k. Poderá mover C e confirmará que a cada ponto P corresponderá um ponto P' mantendo-se invariante (para cada recta RS) o produto |OP|.|OP'|.
É muito interessante e potente este resultado. Muitas perguntas, muitos problemas são sugeridos imediatamente pela definição. Por exemplo, para cada recta e para cada constante qual o centro da involução?
Porque será que aquele produto é constante, quando P varia sobre a recta? É disso que vamos tratar, dando exemplos de involuções conhecidas...(?)
A ilustração do caso presente - involução retangular (∠ PVP'= ∠ AVA' são retos e ∠ VOP também é reto)- agora apresentada é muito esclarecedora. Foi dedicada ao único bisavô deste projecto, a saber, António Aurélio Fernandes.
Subscrever:
Mensagens (Atom)