10.6.22

uma propriedade de todos os triângulos


Os pontos $\;A, \;B, \;C, \;$ de que pode mudar as posições, são vértices de um triângulo $\;\Delta [ABC].\;$ $\;M\;$ é o ponto médio do lado $\;[BC].\;$
A circunferência definida pelos três vértices do triângulo $\;\Delta [ABC]\;$ e tomámos as suas tangentes em $\;B\;$ e em $\;C\;$ que se intersetam num ponto $\;D\;$. Olhamos para os ângulos $\;\angle {MÂB}\;$ e $\; \angle {CÂD}\;$.
Pedimos que prove ser verdade (ou não) que são iguais os ângulos $\;\angle {MÂB}\;$ e $\; \angle {CÂD}\;$.

Nós ficamos à espera de nós...
$ \;\hspace{3.5cm}\;$... e vós?

Sem comentários: