Mostrar mensagens com a etiqueta Mariana Sacchetti. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Mariana Sacchetti. Mostrar todas as mensagens

21.11.22

MS : Problemas de Apolonio (continuadas - 5)


(5) Círculo tangente a dois pontos e um círculo (PPC)
iniciativa de Mariana Sacchetti:

5.1. Um ponto é exterior ao círculo e outro é interior ao círculo


Esta situação não tem solução.

5.2. Um ponto pertence ao círculo e o outro é exterior ou interior ao círculo
Ou os dois pontos pertencem ao círculo

Estas situações têm uma só solução. No caso de ambos os pontos pertencerem ao círculo essa solução é o próprio círculo.
O centro da circunferência pretendida é a interseção da mediatriz de $\;[PQ]\;$ com a reta $\;OQ\;$ (sendo $\;Q \;$ o ponto que pertence ao círculo)
Na construção pode deslocar o ponto $\;P\;$ e observar cada uma destas situações.

5.3. Os dois pontos são exteriores ao círculo ou interiores ao círculo
As duas situações têm duas soluções, que se encontram da mesma maneira
Comecemos por traçar a mediatriz de $\;PQ$. Esta poderá ou não passar pelo centro da circunferência dada.

5.3.1 A mediatriz de $\;[PQ] \;$ não passa pelo centro da circunferência dada

Tracemos uma circunferência qualquer que passe por $\;P \;$ e $\;Q \;$ e que intersete a circunferência dada em $\;C \;$ e $\;D \;$
A reta $\;CD \;$ interseta a reta $\;PQ \;$ no ponto $\;E.\;$

Tracemos a circunferência de diâmetro $\;OE.\;$ Esta interseta a circunferência dada nos pontos de tangência das soluções pretendidas.
Basta agora traçar as soluções que passam por três pontos $\;T_{1}$, $\;P \;$ e $\;Q \;$ e $\;T_{2}$, $\;P\;$ e $\;Q\;$

5.3.2 A mediatriz de $\;[PQ] \;$ passa pelo centro da circunferência dada

A construção torna-se mais simples pois a mediatriz de $\;[PQ]\;$ determina no círculo dado os pontos de tangência $\;T_{1}\;$ e $\;T_{2}\;$


Se os dois pontos são interiores ao círculo as soluções são:



20.10.22

Por um ponto P passa uma reta que corta duas circunferências em cordas iguais

iniciativa de Mariana Sacchetti:
respondendo a Marco Antônio Manetta que comentou em "Resolver um problema de construção usando uma translação"
15/09/2014:
Como seria a resolução se, ao invés de uma reta paralela, fosse dado um ponto (externo às duas circunferências) por onde a reta deve passar e determinar cordas iguais nas duas circunferências
Sejam dadas duas circunferências e um ponto P exterior às duas.
Traçar por P uma reta que determine cordas de igual comprimento em ambas as circunferências.



Clicando passo a passo pode ir seguindo a construção acima
1. Traçar o eixo radical das duas circunferências:
- Traça-se uma circunferência auxiliar que intersete as duas circunferências.
- Traçam-se as retas definidas pelos pontos de interseção da circunferência auxiliar com cada uma das circunferências
- O eixo radical é a reta que passa pelo ponto de interseção das duas retas e é perpendicular à reta dos centros das circunferências
2. Seja $\;M\;$ o ponto médio de $\;[O_{1}O_{2}]\;$
3. Traçar a circunferência de diâmetro $\;[MP]\;$
4. A reta que define nas circunferências cordas com o mesmo comprimento é a reta que passa por $\;P\;$ e o ponto de interseção do eixo radical com a circunferência de diâmetro $\;[MP]\;$ $$\; \overline{𝑄𝑅} = \overline{𝑆𝑇}\;$$

Nota:.........Problema nº 227 proposto no Geometriagon (http://polarprof-001- site1.htempurl.com)

10.10.22

Problemas de Apolónio

iniciativa Mariana Sacchetti:
Dadas três coisas, cada uma delas pode ser um ponto, uma reta ou um círculo, traçar um círculo que é tangente a cada uma das três coisas.
Nota: Ser tangente a um ponto significa conter o ponto
Teremos ao todo 10 situações:
(1) 3 pontos (PPP)
(2) 3 retas (LLL)
(3) 2 pontos e1reta (PPL)
(4) 2 retas e 1 ponto (LLP)
(5) 2 pontos e 1 círculo (PPC)
(6) 2 círculos e 1 ponto (CCP)
(7) 2 retas e 1 círculo (LLC)
(8) 2 círculos e 1reta (CCL)
(9) 1 ponto, 1 reta e 1 círculo (PLC)
(10) 3 círculos (CCC)



(1) Círculo tangente a 3 pontos (PPP) (vulgarmente: círculo que passa por 3 pontos)
Este problema não tem solução se os três pontos forem colineares. Caso contrário tem sempre uma única solução




(2) Círculo tangente a três retas (LLL)

1.1. As 3 retas são paralelas ou as três retas são concorrentes no mesmo ponto

Ambas as situações não têm solução


2.2 Duas das retas são paralelas e a terceira é concorrente

Neste caso há duas soluções
Ambas as soluções têm centro na linha média entre as paralelas, interseção com as bissetrizes $\;b_1\;$ e $\;b_2\;$

2.3. As retas são concorrentes duas a duas
Nesta situação há 4 soluções: a circunferência inscrita e as circunferências ex-inscritas ao triângulo que as três retas formam.


14.3.22

Seja espelho a dourada circunferência: qual a posição da imagem do ponto A a esse espelho?

Considere a inversão associada à circunferência dourada e determine o transformado de A por essa inversão.

5.5.20

Dual do problema de Malfatti (da entrada anterior)


[M.I.B.H.S.]:
Dual do problema de Malfatti (geometriagon 868 - enunciado também referido em 5.6.09)

Dados dois círculos circunscrever-lhes os dois triângulos equiláteros de área mínima

A construção vai em anexo:
1. Determinar as tangentes exteriores aos dois círculos (deixei a construção a preto tracejado)
2. Sobre cada tangente construir os triângulos equiláteros com os lados tangentes a cada círculo (deixei a construção de um dos lados, de um dos triângulos, a laranja tracejado.
Esta construção repete-se para os outros lados)


[M.I.B.H.S.]

24.9.14

Semicircunferência, círculos, triângulos e tangências (II)


Problema: No interior de uma semicircunferência de diâmetro $\;AB\;$ uma circunferência é tangente nos pontos médios do seu diâmetro e do arco da semicircunferência. Há dois círculos, coloridos na imagem, tangentes ás retas que unem A e B com os pontos de interseção da semicircunferência com as tangentes à circunferência, inscrita na semicircunferência, tiradas por $\;A\;$ e por $\;B.\;$ Determinar os raios dos círculos coloridos em função do diâmetro $\;AB\;$ dado.

Clique no botão de mostrar e ocultar "Auxiliares" para tornar visiveis pontos e segmentos auxiliares e as designações que lhe foram atribuídas para acompanhar a descrição da construção e dos cálculos.
Na anterior entrada, vimos algumas relações entre os triângulos da figura e os elementos definidores. Com base na nossa figura, determinámos as posições dos pontos de tangência $\;M, \; N\;$ e os centros $\;J\;$ e de $\;K\;$ . Há várias construções auxiliares que nos apareceram como necessárias às determinações de $\;MJ\;$ e $\;KN\;$ em função de $\;AB.\;$ Não desistimos de tentar resolver esse problema com recurso exclusivo à nossa figura base e a resultados básicos. Mariana Sacchetti apresentou uma resolução, a seguir transcrita aqui.

© geometrias, 20 de Setembro de 2014, Criado com GeoGebra


1.
Começa por lembrar os termos usados: $\;AB=4r, \; AD=AM= 2r, \; OM=r\;$ e da semelhança de triângulos $\;ADE \sim OME\;$ retângulos em $\;D\;$ e $\;M\;$ retira $$\frac{AE}{OE} =\frac{AD}{OM}≈\frac{DE}{ME} = 2,$$ por ser $\;AD=2r\;$ e $\;OM=r.\;$. E a partir destas proporções constantes, retira
$$ \begin{matrix} DE=2ME & \mbox{ou} & r+OE=2ME&& OE=2ME-r & & \ldots& & OE = \frac{5}{3}r\\ &&&\Longleftrightarrow&&\Longleftrightarrow& &\Longleftrightarrow&\\ AE=2OE & \mbox{ou} & 2r+ME=2OE & & 2r+ME =4ME-2r& &3ME=4r&&ME=\frac{4}{3}r \\ \end{matrix} $$ Da semelhança $\;OME \sim HMB\;$ ambos retângulos em $\;M\;$ retira $$\frac{HB}{OE}=\frac{HM}{OM}=\frac{MB}{ME} =\displaystyle\frac{3}{2},$$ por ser $\;MB=2r\;$ e $\; ME=\displaystyle \frac{4r}{3}\;$ (como vimos antes). Assim sendo $\; \displaystyle OE = \frac{5}{3}r,\;$ como vimos antes, e $\; \displaystyle \frac{HB}{OE} = \frac{3}{2},\;$ então $\; HB= \displaystyle \frac{3}{2} \times \frac{5}{3}r ,\;$ $$ HB= \frac{5r}{2}.$$ E, analogamente, por ser $\;OM =r, \;$ e $\;HM=\displaystyle \frac{3}{2}\times r, \;$ $$HM= \frac{3r}{2}.$$
2.
A circunferência $\;(J)\;$ do círculo amarelo está inscrita no triângulo $\;ABH\;$ isósceles ($\;AH=HB = \displaystyle \frac{5r}{2}\;$) de perímetro $2p =AB+BH+HA=4r+ 2\frac{5r}{2}=9r, \;$ cuja área é, por um lado, $$\Delta ABH = \displaystyle\frac{AB\times HM}{2} =\frac{4r \times {3r}{2}}{2} =6r^2$$ e por outro, como produto do seu semiperímetro $\;p = \displaystyle\frac{9r}{2}\;$ pelo raio da circunferência nele inscrita, no caso $\;MJ\;$ $$\Delta ABH = p\times MJ = \frac{9r}{2} MJ$$ de onde se retira, $\;6r^2 =\displaystyle \frac{9r}{2} MJ$ e, finalmente $$MJ= \frac{2r}{3} \;\;\; \mbox{ou}\;\;\; MJ= \frac{AB}{6}. $$
3.
A relação entre os valores de $\;NK\;$ e $\;AB\;$, obtém-se rapidamente da relação anterior e de outra $\;NK = \frac{MJ}{3}\;$ já estabelecida na entrada anterior: $$NK = \frac{MJ}{3}= \frac{\displaystyle\frac{2r}{3}}{3} =\frac{2r}{9} \; \;\; \mbox{ou} \,\;\; NK =\frac{AB}{18} \;\;\; \;\square$$