Mostrar mensagens com a etiqueta circunferências. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta circunferências. Mostrar todas as mensagens

10.8.07

a inversa da concêntrica verde

Considere a circunferência c, preta na figura, e a inversão a ela associada. Determine a transformada por essa inversão da cirucunferência verde, v.

Inverter é ver ao espelho. O quê,?

Tomámos uma circunferência de centro em O e raio r. Os inversos dos pontos de uma recta exterior a essa circunferência (inversora, assim lhe chamamos para simplificar) estão todos sobre uma circunferência que passa pelo centro da circunferência inversora. Falávamos de inverso mesmo no sentido do que neutralizaria um número pela multiplicação: a cada P da recta r, associamos o número p = |OP|/r e ao transformado P' de P fica associado um número p' =|OP'|/r=r/|OP|=p-1. Claro que o ponto O a que corresponde |OO|=0 não é inverso de qualquer ponto (ou é inverso do ponto impróprio da recta - no infinito) e não tem inverso na inversão associada à circunferência de centro O (ou é inverso de qualquer ponto impróprio de qualquer recta).
[A inversa de uma recta é uma circunferência com menos um ponto (ou com um buraco). A imagem por inversão associada a uma cirunferência de uma recta acabada (incluindo os pontos impróprios onde ela começa e acaba, no infinito) é uma circunferência.]
Interessante é agora procurar inverter figuras geométricas ou ver as suas imagens num espelho circular. Qual é a imagem de uma recta secante à circunferência inversora? Qual é a imagem de uma cirunferência que não seja concêntrica com a crcunferência inversora de centro O e não passe por O? Qual é a imagem da própria circunferência inversora? Qual é a imagem de uma circunferência concêntrica com outra tomando para espelho uma delas? Qual é a imagem de um segmento de recta? E de um triângulo?
Tantas perguntas? Algumas delas. Cada pessoa pode fazer outras tantas e ver como as respostas fazem quadros surpreendentes e belos. Com que cores queremos pintar o nosso mundo do outro lado do espelho?

3.8.07

Inversão

Com os alunos do 8º ano, experimentei a compreensão de alguns procedimentos para efectuar, com régua e compasso, construções geométricas sobre segmentos correspondentes a operações sobre números. Escolhido um segmento para unidade, e dados segmentos de comprimentos a e b, quaisquer, não aparecia como fácil a determinação de um segmento correspondente ao comprimento ab e menos ainda os correspondentes aos comprimentos a/b, 1/a, a2>, etc. Na altura, tal era pedido depois de termos cuidado das semelhanças de triângulos e os raciocínios usavam só a proporcionalidade entre segmentos determinados por feixes de rectas concorrentes cortadas por paralelas. Parece que não há qualquer problema em determinar 2a em linha nem em compreender o que significa ab, a2 ou a(b+c) em termos de áreas, mas já tudo se complica quando se pede um segmento igual a 2a/3, ab, etc. Parece que não é assumida a sistemática comparação entre segmentos quando se fala em medida de um comprimento relativamente a outro.
No 9º ano, vamos poder voltar às operações sobre segmentos, agora com recurso sistemático a circunferência e tangentes tiradas por um ponto, sem acrescentar muito ao que se sabe sobre triângulos. Será que a compreensão aumenta? Estas dificuldades devem estar todas resolvidas quando entramos na geometria analítica como tal. Por exemplo, sobre a construção que se apresenta a seguir, está desenhada uma circunferência de raio 3 e as tangentes tiradas por um ponto P (que pode deslocar), um ponto P' (da polar de P relativamente à circunferência e colinear com O e P), define o segmento [OP'] cujo comprimento é o inverso do comprimento de [OP] se tomarmos como unidade o raio da circunferência.

[A.A.F.]

A transformação associada à circunferência dada que a cada P faz corresponder P' (e reciprocamente) nas condições da construção dada, toma naturalmente o nome de inversão relativamente à circunferência. Este é outro exemplo, para aprofundar e melhorar o conceito de medida, permitindo realizar exercícios geométricos muito atractivos geometricamente. Valerá a pena?
No mundo do ATRACTOR há uma máquina muito potente que efectua inversões. Pode usar livremente.