Mostrar mensagens com a etiqueta paralelogramo. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta paralelogramo. Mostrar todas as mensagens

20.4.16

Construir um paralelogramo equivalente a um polígono


As últimas entradas foram dedicadas a problemas de construção de paralelogramos equivalentes a triângulos dados, ... A proposição I.45 de "Os Elementos" trata do problema de construção de um paralelogramo de área igual a um polígono, sendo dados um lado e um ângulo do paralelogramo a construir .

Este problema resolve-se com recurso às construções de paralelogramo equivalente a um triângulo dado que é repetida tantas vezes quantos os triângulos em que dividamos o polígono em causa.

No caso da nossa ilustração abaixo, temos um polígono $\;ABCDEF\;$ e tomamos para lado do paralelogramo o segmento $\;GH\;$ e um ângulo $\; \angle STU \;$ a que deve respeitar o ângulo do paralelogramo de vértice $\;H.\;$ Pode variar o ângulo $\; \angle STU,\;$ o comprimento de $\;GH.\;$

©geometrias, 20 abril 2016, Criado com GeoGebra

No caso,decompusemos o nosso polígono $\;ABCDEF\;$ de 6 lados em 4 triângulos $\;ABC, \;ACD, \;ADE, \;AEF.\;$ Começando por construir um paralelogramo de lado $\;GH\;$ de área igual a $\;ABC\;$ (exatamente, como fizemos em I.44). Depois construímos um paralelogramo de área igual a $\;ACD\;$ agora sobre o lado do primeiro paralelogramo oposto a $\;GH, \;$ etc. Desse modo, construímos quatro paralelogramos, cada um deles com área igual a um dos triângulos em que decompomos o polígono. Assim o paralelogramo $\;GHILJ\;$ e o polígono $\;ABCDEF\;$ são equivalentes (de áreas iguais). Claro que este processo pode ser usado para construir paralelogramos equivalentes a polígonos de qualquer número de lados.

Para evitar a complicação que este processo euclidiano de repetição acarreta, convém lembrar que se pode sempre construir um triângulo equivalente a um polígono(qualquer que ele seja) e depois só haverá necessidade de aplicar os procedimentos (I.44).


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

21.3.16

Construir um paralelogramo de que se conhecem as diagonais e um lado


Problema:
Construir um paralelogramo $\;[ABCD]\;$ de que conhecemos os comprimentos de um dos seus lados $\;a=AB\;$ e das suas diagonais $\; d_1=AC, \; d_2= BD.$

Um paralelogramo tem os lados opostos paralelos e de comprimentos iguais: $$\;AB\parallel CD \wedge AB=CD; \; BC\parallel DA \wedge BC=DA\;$$ e cada uma das suas diagonais encontra a outra no seu ponto médio, ou seja, há um ponto
$$\;M : \;\;\;\;AM = MC = \frac{d_1}{2},\;\;\; BM = MD = \frac{d_2}{2}\;$$

Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 21 março 2016, Criado com GeoGebra




Temos dados bastantes para construir um triângulo $\;[AMB]\;$ de lados $\;a=AB, \;\frac{d_1}{2}=AM, \; \frac{d_2}{2}=BM.\;\;\;\;\;$ E a partir dele, tudo se retira:
$\;\left(M,\;\frac{d_1}{2}, \right).AM \rightarrow C, \;\;\;\left(M,\;\frac{d_2}{2}\right).BM \rightarrow D\;$ □

200. Construire un parallèlogramme connaissant ses deux diagonales et un côté.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

10.8.14

Resolver problema de construção usando rotações (análise e síntese)


Problema: Inscrever num paralelogramo dado $\;[ABCD]\;$, um retângulo $\;[EFGH]\;$ cujas diagonais $\;EG,\;FH\;$ formam um ângulo $\; \angle EÔF=\alpha\;$ dado.

Este problema foi considerado no livrinho de A. Lôbo Vilela, Métodos Geométricos para ilustrar o particular método das transformações e o geral método da análise do problema.
Consideremos as retas dos lados do paralelogramo dado $\;a=AB, \;b=BC, \;c=CD, \;d=DA,\;$ E considerem-se conhecidas as propriedades dos paralelogramos relativas aos lados, ângulos, diagonais, centro,...
As diagonais de um paralelogramo bissetam-se. Chamamos $\;O\;$ ao ponto de interseção das diagonais do paralelogramo $\;AC.BD\;$ e as diagonais de qualquer retângulo nele inscrito intersetam-se no mesmo ponto.
Considerando o problema resolvido temos um retângulo $\;[EFGH]\;$ inscrito em $\;[ABCD], \;$, sendo $\; E\;$ um ponto sobre $\;a=AB,\;$ $\;F\;$ sobre $\;b=BC,\;$, $\;G\;$ sobre $\;c=CD,\;$ e $\;H\;$ sobre $\;d=DA.\;$
Sendo $\;O\;$ o centro comum, o ponto $\;F\;$ é a imagem de $\;E\;$ pela rotação de centro $\;O\;$ e ângulo $\;\alpha\;$ - $\;{\cal{R}}_O ^\alpha$. Como a rotação preserva a incidência o ponto $\;E\;$ de $\;a\;$ é transformado pela rotação $\;{\cal{R}}_O ^\alpha\;$ num ponto de $\;a'\;$ e de $\;b$, já que $\;F\;$ é ponto de $\;b\;$.


Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 5}$
  1. Na nossa construção, apresentamos como dados o ângulo $\;\alpha\;$ de amplitude igual ao ângulo das diagonais do retângulo inscrito no paralelogramo $\;[ABCD]\;$ de centro $\;O\;$
  2. $\fbox{n=2}:\;$ Tomamos as retas que contêm os lados do paralelogramo dado
  3. $\fbox{n=3}:\;$ A análise feita acima, dá-nos $\;F\;$ como $\;a'.b\;$, sendo $\;a'= \;{\cal{R}}_O ^\alpha\;(a).\;$ Conhecido $\;F,\;$ determinamos $\;E\;$ como $\;\;{\cal{R}}_O ^{-\alpha}\;(F)\;$

  4. © geometrias, 9 de Agosto de 2014, Criado com GeoGebra


  5. $\fbox{n=4}:\;\;$ $\;E, \;F\;$ são vértices consecutivos do retângulo, cujas diagonais iguais se bissetam em $\;O\;$. Por isso, os restantes vértices são obtidos por transformação de meia volta de centro $\;O\;$:
    $$\begin{matrix} &{\cal{R}}(O, \pi)&&\\ E&\mapsto & G : & \mbox{ou} \quad \{G\} = EO.CD\\ F&\mapsto & H: & \mbox{ou}\quad \{H\} = FO.DA \\ \end{matrix}$$
  6. $\fbox{n=5}:\;\;$ As diagonais $\;EG\;$ e $\;FH\;$ são diâmetros da circunferência de rotação em que afinal se inscreve o retângulo.
    $H\hat{E}F= E\hat{F}G =F\hat{G}H =G\hat{H}E = \frac{\pi}{2}$ inscritos em semicircunferências.

28.7.14

Resolver problema de construção usando os métodos do problema contrário e transformação (4)


Problema: Inscrever num retângulo $\;[ABCD],\;$ um paralelogramo semelhante a outro $\;[EFGH]\;$ dado.
Vilela, António Lôbo. Métodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
O problema proposto consiste em construir um paralelogramo $\;[E_1F_1G_1H_1]\;$ semelhante a $\;[EFGH]\;$, inscrito no retângulo $\;[ABCD]\;$ dado: $\;E_1 \in AB, \;F_1\in BC, \;G_1 \in CD, \;H_1 \in DA.\;$
Para resolver o problema proposto, começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito a $\;[EFGH]\;]$ ou cujos lados passem pelos vértices $\;E,\;F, \;G,\;H\;$ do paralelogramo.
Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. Na nossa construção, apresentamos como dados um retângulo $\;[ABCD]\;$ e um paralelogramo $\;[EFGH]\;$. Para além disso, apresentamos as diagonais do retângulo $\; AC, \;BD\;$ e o ângulo $\; \alpha\;$ por elas formado. De igual modo, se mostram as diagonais $\;EG, \;FH\;$ do paralelogramo e o ângulo $\;\beta\;$ por elas formado.
    Estes dados são relevantes para qualquer resolução do problema, pois "a condição necessária e suficiente para que dois paralelogramos sejam semelhantes é que sejam iguais os ângulos formados pelas respetivas diagonais".
  2. Começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito ao paralelogramo $\;[EFGH],\;$ ou seja, um retângulo com cada um dos seus lados a passar por um dos vértices do paralelogramo e com as diagonais a fazer ângulo igual ao das retas $\;(AC, \; BD) =137.48^o,\;$ na ilustração.
    • $\fbox{n=2}:\;$ O centro do paralelogramo é o centro do retângulo a ele circunscrito, no caso $\;I.\;$. Para obter uma reta que seja diagonal de um retângulo centrado em $\;I\;$ semelhante a $\;[ABCD]\;$, bastará encontrar um outro ponto da diagonal para além do $\;I\;$, por exemplo, o ponto de interseção imagem da reta de um dos lados, p.e. $\;HE\;$, pela rotação $\;{\cal{R}}(I, \; \alpha)\;$, com a reta do lado consecutivo $\;EF\;$ (Verifique.)
    • $\fbox{n=3}:\;$Para ser retângulo (lados consecutivos perpendiculares) cada um dos seus vértices terá de ser um ponto de circunferência com um dos lados do paralelogramo por diâmetro. No caso da nossa construção, encontramos o primeiro vértice do retângulo circunscrito intersetando a reta obtida como reta diagonal com a circunferência de diâmetro $\;FG\;$. Os lados desse retângulo, a passar por $\;E, \;F, …\;$ são obtidos facilmente.
  3. © geometrias, 27 de Julho de 2014, Criado com GeoGebra


  4. O retângulo obtido é semelhante a $\;[ABCD]\;$, o que significa há uma transformação de semelhança a relacioná-los.
    $\fbox{n=4}:\;$ No caso da nossa construção, escolhemos o vértice $\;R,\;$ por ele tirámos uma paralela a $\;AB\;$ e aplicámos-lhe que a rotação $\;{\cal{R}}(R, \zeta)\;$, de modo a obter pares de lados paralelos a pares de lados paralelos de $\;[ABCD]\;$
    Obtivemos um novo paralelogramo inscrito no novo retângulo ao aplicar-lhe a mesma rotação $\;{\cal{R}}(R, \zeta)\;$, que preserva as incidências, os comprimentos, as amplitudes
  5. $\fbox{n=5}:\;$ Finalmente a este novo retângulo do qual os pontos $\;R, \;S\;$ são vértices, aplicamos a homotetia de centro em $\;CR.DS\;$ e razão $\; \displaystyle \frac{CD}{RS}\;$ que transforma $\;C\;$ em $\;R\;$ e $\;D\;$ em $\;S\;$
  6. $\fbox{n=6}:\;$Obviamente que, por essa homotetia, o paralelogramo laranja da figura que está inscrito no retângulo laranja (obtidos pela rotação $\;{\cal{R}}(R, \zeta)\;$ é transformado no paralelogramo $\;[E_1F_1G_1H_1]\;$ que, porque a homotetia preserva incidências, etc, é um paralelogramo inscrito em $\;[ABCD]\;$ semelhante a $\;[EFGH]\;$.
Claro que usámos transformações e podemos dizer, por isso, que usámos o método das transformações. O que é o mais natural é usarmos vários métodos para resolver qualquer problema. E, mesmo quando não o referimos, o mais natural é que face a um problema comecemos por usar a análise e acabemos a usar a síntese que são os raciocínios gerais em geometria, essenciais para resolver problemas de construção.

2.7.14

Resolver um problema de construção usando análise e síntese (5)


Problema:     Construir um trapézio de que se conhecem os quatro lados
Th. Caronnet, Exércices de Géométrie. 2ème livre- La Circonférence. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
Análise do problema:
Suponhamos o problema resolvido: Teríamos um trapézio $\;[ABCD]\;$ que tem por lados $\;AB=a, \;BC=b, \; CD=c, \; DA=d, \;$ sendo $\;AB \;$ a base maior e $\;CD\;$ a base menor do trapézio. Tirando por $\;C\;$ uma paralela a $\;DA\;$, ela corta $\;AB\;$ em $\;E.\;$ Do triângulo $\;[BCE]\;$ conhecemos os comprimentos dos seus três lados: $\;EB=AB-AE=a-c, \;BC=b, \; EC=AD=d\;$.
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 8}.\;$

© geometrias, 2 de Julho de 2014, Criado com GeoGebra



  1. A análise feita, diz-nos que um triângulo de lados $\;b, \;d, \;|a-c|\;$ é parte do trapézio que pode ser construída e a partir do qual se pode construir um trapézio com os lados dados.
  2. Começamos por tomar um ponto $\;B\;$ qualquer
  3. O ponto $\;C\;$ pode ser um ponto qualquer da circunferência de raio $\;b\;$ e centro em $\;B\;$
  4. Relativamente a esses $\;B\;$ e $\;C\;$, o ponto $\;E\;$ referido na análise do problema é um dos pontos da interseção da circunferência de centro $\;B\;$ e raio igual a $\;|a-c|\;$ (diferença das bases do trapézio) com a circunferência de centro $\;C\;$ e raio $\;d.\;$
  5. Temos um triângulo $\;[BCE]\;$, a partir do qual se pode construir o trapézio.
    O que falta para termos o trapézio que procuramos resume-se a obter os dois vértices do paralelogramo de $\;[AECD]\;$ de que conhecemos $\;CE=d =AD, \;CE \parallel AD, \; AE=c=CD, \;AE \parallel CD.\;$
  6. $\; A \in BE.(B, \;a)\;$
  7. A paralela a $\;CE\;$ tirada por $\;A\;$ interseta a paralela a $\;BE\;$ tirada por $\;C\;$ no ponto $\;D\;$.
  8. E, finalmente, podemos apresentar o polígono $\;[ABCDE]\;$ que é o trapézio requerido. □
A existência de solução do problema está ligada às condições de existência do triângulo $\;[BCE]\;$, a saber
$\;|a-c| < b+d, b<|a-c|+d, d<|a-c|+b \;$ que é o mesmo que $\;|b-d|< |a-c| < b+d . \;$
No caso dos dados originalmente apresentados, consideramos$\;c < a\;$ e portanto $\;|a-c|=a-c\;$, isto é, que $\;a\;$ e $\;c\;$ são respetivamente a base maior e a base menor do trapézio.