Mostrar mensagens com a etiqueta livro XIII. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta livro XIII. Mostrar todas as mensagens

23.8.15

Elementos: Construir um icosaedro (Proposição 16 do Livro XIII)


Proposição 16:
Construir um iscosaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;AB\;$ a azul na figura em que também tomamos um ponto $\;C\;$ do diâmetro tal que $\;AC+CB=AB\;$ e $\;AC=4\times BC\;$ e um ponto $\;D\;$ da semicircunferência $\;ADB\;$ tal que $\; A\hat{C}D\;$ seja reto. Ficam traçados também a azul $\;CD, \;DB,\;$, este último presente em todos os passos da construção. Passos da construção:
  1. Tomamos uma circunferência de raio $\;DB\;$, e sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  2. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$ Desta circunferência, na nossa construção, designamos por $\;V\;$ o seu centro.
    A circunferência de raio $\;DB\;$ e centro em $\;W\;$ em que se inscreve $\;QRSTU\;$ está num plano paralelo ao plano de $\;EFGHK\;$ ou $\;LMNOP\;$, sendo $\;EQ=VW=VE=DB. \;$

    © geometrias. 2 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\; UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    E, como $\;QL^2=EL^2+QE^2,\; QL\;$ pode ser visto como lado do pentágono inscrito em $\;(I, DB), \;$ do qual $\;OP, \; \;LP,\;$ também podem ser vistos como lados, o triângulo $\;QLP\;$ é equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
    Como já tínhamos visto, $\;QRSTU\;$ é um pentágono equilátero de lados paralelos e iguais ao pentágono inicial $\;EFGHK\;$ e assim são equiláteros (por terem lados comuns aos dos triângulos anteriormente referidos de que são iguais) os triângulos $\; LQR, \;MRS, \;NST, \;OTU.\;$
  3. Sobre a reta que passa pelos centros $\;V,\; W\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;V,\;X\;$ e $\;W,\;Z.\;$ Como $\;VX\;$ é o lado do decágono e $\;VP\;$ é o lado do hexágono (raio), sendo $\;X\hat{V}P\;$ um ângulo reto, então $\;PX\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LX = MX=NX=OX=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(V, VP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;XLM, \;XMN, \;XNO, \;XOP, \;XPL,\;$ e iguais a $\;PQL, \ldots\;$
  4. De igual modo se provaria que são iguais aos anteriores os triângulos $\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ.\;$

Temos assim um sólido limitado por uma superfície fechada composta por 20 triângulos iguais entre si e equiláteros, a saber
$\;XLM, \;XMN, \;XNO, \;XOP, \;XPL;\;\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ;\; \;LRM,\; MSN, \; NTO,\; OUP,\;PQL;\;$ $ \; LQR, \;MRS, \;NST, \;OTU,\;PUQ,\;$ que são as 20 faces; de lados $\;XL, \;XM, \;XN,\; XO, \; XP; \;PL,\; LM, \;MN, \;NO, \; OP; \;PQ, \;QL, \;LR, \;RM,\;MS,\;SN,\;NT,\;TO,\;OU,\;UP;\;$ $\; QR,\;RS,\; ST,\;TU,\;UQ;\;QZ,\;RZ,\;SZ,\;TZ,\;UZ,\;$ que são as 28 arestas; cujos extremos são $\;V, \;L, \;M, \;N, \;O, \;P, \;Q, \;R, \;S, \;T, \;U, \;W,\;$ que são os 12 vértices do icosaedro.



Falta provar que este icosaedro está encapsulado (ou inscrito?) numa esfera gerada por um semicírculo de diâmetro $\;AB\;$:
Por construção, sabemos que $\;XV=WZ=PE,\; VW=DB\;$ (respetivamente lado do decágono e lado do hexágono regulares inscritos na mesma circunferência em que se inscreve o pentágono $\;EFGHK.\;$ Por isso, $\;VZ =VW+WZ\;$ é dividido pelo ponto $\;W\;$ em média e extrema razão (prop. XIII.9 : se os lados de um hexágono e de um decágono inscritos num mesmo círculo forem acrescentados um ao outro, obtém-se um segmento de reta que fica dividido em média e extrema razão pelo ponto de junção, sendo a parte maior o lado do hexágono) o que pode ser descrito por $$\; \displaystyle \frac{VZ}{VW}= \frac{VW}{WZ}.$$
  1. Consideremos os segmentos $\;ZE, \;EV, \;EX, \;$ para além de $\;XZ, \;XV,\;VW, \;WZ, \;VZ,\; $ os triângulos $\;ZVE, \;XVE,\;ZEX\;$ e os ângulos $\;Z\hat{V}E, \;X\hat{V}E,\;$ retos, por construção. Como $\;VW=VE=EQ=DB\; $ e $\;WZ=VX=PE,\;$ a expressão acima permite-nos escrever $\; \displaystyle \frac{VZ}{VE}= \frac{VE}{VX}\;$ relacionando lados dos triângulos $\;ZVE, \;XVE,\;ZEX\;$ que, por isso, os dois primeiros são triângulos retângulos em $\;V\;$ e o terceiro é retângulo em $\;E\;$ de altura $\;VE = DB\;$, semelhantes entre si (VI.8). O ponto $\;E\;$ é pois um ponto da semicircunferência de diâmetro $\;XZ\;$. A mesma semicircunferência passa por $\;Q\;$ (já que, obviamente e do mesmo modo, o triângulo $\;XQZ\;$ é retângulo em $\;Q\;$ e de hipotenusa $\;XZ\;$ e com $\;QW=DB.\;$ E, mantendo fixo o diâmetro (eixo) $\;XZ,\;$, a semicircunferência passará por todos os pontos angulares (vértices) do icosaedro construído, ao rodar em torno de $\;XZ.\;$
    Fica assim provado que o icosaedro construído está encapsulado numa esfera de diâmetro $\;XZ.\;$ Será esta esfera de diâmetro $\;AB ? \;$
    • Sabemos que $$\frac{VZ}{VW}= \frac{VW}{WZ} \Leftrightarrow VW^2 = VZ \times WZ $$ Consideremos o ponto $\;J\;$ médio de $\;VW\;$ que é também o ponto médio de $\;XZ=XV+VW+WZ\;$ já que $\;XV=WZ\;$. Prova-se que, sendo $\;VW\;$ o maior na divisão, por $\;W\;$ de $\;VZ\;$ em média e extrema razão, o quadrado do menor $\;WZ\;$ acrescentado de metade do maior $\;JW\;$ é 5 vezes o quadrado deste: $$(JW+WZ)^2 =5 \times JW^2$$ o que é fácil de verificar. (Assim: $\;VW=2\times JW, \;$ então $\;VW^2= 4\times JW^2 \;\;$ e, como antes tínhamos visto, $\;VW^2= VZ \times WZ.\;$ Conclui-se que $ \; 4\times JW^2 = VZ \times WZ. \;$ Como $\;VZ=VW+WZ \;$ e $\;VW=2\times JW,\;$ podemos escrever $ \; 4\times JW^2 = (VW+WZ)\times WZ = VW\times WZ +WZ^2 =2\times JW\times WZ+WZ^2,\;$ e, concluindo $JZ^2 = (JW+WZ)^2 = JW^2 + WZ^2 + 2JW\times WZ = JW^2+4\times JW^2 = 5\times JW^2.\;$)
      Sendo $\;JZ^2=5\times JW^2,\;$ como $\;XZ=2\times JZ \;$ e $\;VW= 2\times JW\;$, $\;XZ^2 = 5\times VW^2.\;$


    • Dos dados iniciais, lembramos um triângulo $\;ADB\;$ retângulo em $\;D\;$ e de hipotenusa $\;AB\;$, sendo $\;CD\;$ a altura a ela relativa e $\;C: AC=4CB.\;$
      São semelhantes entre si os triângulos retângulos $\;ABD, \;DAC, \;BDC\;$. Da semelhança $\;ABD \sim BDC\;$ retiramos $\; \displaystyle \frac{AB}{BD} = \frac{BD}{BC}\;$ ou $\;BD^2 = AB\times BC\;$.
      Como $\;AB =AC+CB\;$ e $\;AC=4\times CB, \; AB= 5\times BC ou \displaystyle BC = \frac{AB}{5}.\;$
      Podemos agora escrever que $\;5\times BD^2= AB^2.\;$ E como $\;VW=DB\;$, concluímos assim que $\;AB^2 = XZ^2\;$ e $\;AB=XZ.$
Fica assim demonstrado que o icosaedro construído está encapsulado numa esfera de diâmetro de comprimento $\;AB.\;$

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

15.8.15

Relações entre os lados dos pentágono, decágono e hexágono inscritos numa mesma circunferência


Proposição 16:
Construir um iscosaedro inscritível numa dada esfera.


Passos da construção:
Seja $\;AB\;$ o diâmetro da esfera em que pretendemos inscrever um icosaedro.
  1. Começamos por dividir o diâmetro $\;AB\;$ em duas partes $\;AC\;$ e $\;CB\;$ de tal modo que $\;AC=4\times CB\;$ (VI.10). E seja o semicírculo $\;ADB\;$ de diâmetro $\;AB\;$ e tal que $\; A\hat{C}D\;$ seja reto. Tomamos $\;DB.\;$
  2. Depois tomemos uma circunferência de raio $\;DB\;$ e, sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  3. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$

    © geometrias. 25 de julho de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\;$$ UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    Por razões análogas, podemos concluir que os triângulos construídos $\;LRM, \; MSN,\; NTO,\; OUP.\;$ E, como $\;QL\;$ e $\;OP \;$, assim como $\;LP,\;$ também podem ser vistos como lados do pentágono, o triângulo $\;QLP\;$ é também equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
  4. Sobre a reta que passa pelos centros $\;I,\; J\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;I,\;V\;$ e $\;J,\;W.\;$ Como $\;IV\;$ é o lado do decágono e $\;IP\;$ é o lado do hexágono (raio), sendo $\;V\hat{I}P\;$ um ângulo reto, então $\;PV\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LV = MV=NV=OV=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(I, IP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;VLM, \;VMN, \;VNO, \;VOP, \;VPL,\;$ e iguais a $\;PQL, \ldots\;$
  5. De igual modo se provaria que são iguais aos anteriores os triângulos $\;WQR, \;WRS, \;WST, \;WTU, \;WUQ.\;$


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

7.7.15

Elementos: Construção de um cubo inscritível numa dada esfera


Proposição 15:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.

Construção:
  1. Seja $\;AB\;$ o diâmetro de uma dada esfera (ou seja a esfera gerada pela revolução de um semicírculo em torno do seu diâmetro de comprimento $\;AB\;$)
  2. Dividimos $\;AB\;$ em dois segmentos $\;AC\;$ e $\;CB\;$ tais que $\;AC=2CB\;$
  3. Tiremos por $\;C\;$ uma perpendicular a $\;AB\;$ e, no mesmo plano, tomemos $\;D ,\;$ ponto de interseção dessa perpendicular com a semicircunferência de diâmetro $\;AB\;$
  4. Tracemos $\;CD\;$ e $\;DB.\;$ - $\;A\hat{C}D=D\hat{C}B = 1\;$ reto
  5. Tomámos depois um ponto $\;E\;$ e, a partir dele, construímos um quadrado $\;EFGH\;$ de lado igual a $\;DB\;$.
  6. Em seguida, tirámos por $\;E, \;F,\; G,\;H\;$ perpendiculares ao plano do quadrado $\;EFGH\;$ e, sobre cada uma delas, tomámos um ponto de modo a obtermos $\;EK, \;FL,\; GM,\; HN\;$ iguais a um dos segmentos $\;EF, \; FG,\;GH,\;FE.\;$
  7. Finalmente, desenhámos $\;KL,\;LM,\; MN,\;NK.\;$
Obtivemos assim um cubo, limitado pelos seis quadrados iguais $\;EFGH, \;KLMN, \;EFLK,\;FGML,\;GMNH, \;NHKE.\;$

Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Tomamos $\;KG\;$ e $\;EG.\;$Por construção $\;KE\;$ é perpendicular ao plano $\;EFG\;$ e é por isso, perpendicular a $\;EG\;$ - $\;K\hat{E}G\;$ é reto - o que quer dizer que a semicircunferência de diâmetro $\;KG\;$ passa por $\;E.\;$
    Como $\;GF\;$ faz ângulos retos com cada uma das retas $\;FL\;$ e $\;FE\;$, então $\;GF\;$ também faz ângulos retos com o plano $\;KEF\;$ e, por isso, também é reto o ângulo $\;G\hat{F}K.\;$ E, portanto a semicircunferência de diâmetro $\;KG\;$ também passará por $\;F\;$ na sua rotação em torno de $\;KG.\;$
    Iguais raciocínios nos permitem concluir que essa semicircunferência rodando em torno de $\;KG\;$ passará por todos os vértices do cubo construído.
    Assim, mantendo fixo $\;KG\;$ a semicircunferência em revolução passa pelas mesmas posições desde que iniciou a rotação, o que quer dizer que o cubo está compreendido numa esfera de diâmetro $\;KG.\;$
    Será que está compreendido na esfera dada?
    1. Como $\;GF=FE\;$ e $\;G\hat{F}E\;$ é ângulo reto, então $\;GE^2 =FG^2+FE^2 = 2\times EF^2.\;$ Mas como $\;EF=EK\;$ então $\;EG^2=2\times EF2\;$ e como o ângulo $\;G\hat{E}K\;$ é reto, então $\;KG^2= GE^2+EK^2\;$. Podemos concluir que $\;GK^2=2EF^2+EF^2=3EF^2\;$
    2. Por terem ângulos iguais, cada um a cada um, os triângulos $\;ADB\;$ e $\;BCD\;$, sabemos que $$\frac{AB}{DB}=\frac{DB}{BC} \; \; \; \text{que é o mesmo que} \; \; \; DB^2=AB\times BC$$ e, como $$\;\displaystyle \frac{AB}{BC}= \frac{AB\times AB}{AB\times BC}\;$$ sendo, por construção, $$\;\displaystyle \frac{AB}{BC}=3 \;\; \text{e}\;\; \frac{AB}{BC}=\frac{AB^2}{BD^2} \;\; \text{então} \;\; AB^2=3\times DB^2$$ Na Geometria de Euclides, este resultado aqui apresentado a partir algebricamente já foi demonstrado antes por métodos geométricos....
    3. /ol> Fica assim provado que, por ser $\;EF=DB\;$ e $\;AB^2=3\times DB^2$ podemos concluir que $\;AB^2= GK^2\;$ e $\;AB=GK.$ Ou seja o cubo construído é inscritível numa esfera de diâmetro $\; AB\;$ dado.
              □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

1.7.15

Livro XIII: Construção de um octaedro inscrito numa esfera dada


Proposição 14:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera.
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=CB\;$
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;DB\;$
  4. Prolongámos $\;CD\;$ e tomámos sobre essa a reta, a partir de $\;C\;$ em sentido oposto ao de $\;D,\;$ um segmento de comprimento igual $\;AB\;$ e uma circunferência com esse segmento para diâmetro.
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ dessa circunferência e nela inscrevemos um polígono $\;EFGH\;$ tais que $\;EF = EG = FG=GH=DB\;$. Podíamos ter tomado um outro quadrado de lado igual a $\;DB\;$ em qualquer lugar do espaço. As opções tomadas só têm a ver com aspeto e tamanho da nossa construção.
  6. Sendo $\;K\;$ o centro da circunferência, tirámos uma perpendicular ao plano da circunferência $\;(EFGH)\;$ e sobre ela tomámos $\;L\;$ e $\;M,\;$ um de cada lado do plano de $\;(EFGH)\;$, tais que $\;KL=KM=KE=KF=KG=KH\;$
  7. Os 6 pontos $\;E,\;F,\;G,\;H,\;L,\;M\;$ serão vértices de um sólido de 8 faces triangulares $ \;LEF,\;LFG,\;LGH, \;LHE,\;MEF, \;MFG, \;MFH, \; MHE,\;$ que duas a duas se intersetam em alguma das 12 arestas $\;EF, \;FG, \;GH, \;HE, LE,\;LF,\;LG,\;LH,\;ME, \;MF,\;MG,\;MH.\;$ Traçamos tais arestas e faces.
Demonstraremos que o sólido construído é o octaedro requerido e que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octaedro inscrito na esfera.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Por construção, $\;EFGH\;$ é um quadrado de lado igual a $\;DB.\;$E $\;EK=FK=GK=HK=KL=KM\;$ sendo iguais os ângulos $\;L\hat{K}E = M\hat{K}E = L\hat{K}F =M\hat{k}F = … = \;$1 reto. Por isso, $\;EK^2=LK^2, \; \; EL^2= 2\times EK^2. \;$ Do mesmo modo, $\;EH^2=2 \times EK^2\;$ e, por isso, $\;EL=EH\;$. Pelas mesmas razões, $\;LH = HE.\;$. Assim, podemos concluir que o triângulo $\;LEH\;$ é equilátero.
    Podemos concluir que são equiláteros todos os restantes triângulos cujas bases são os lados do quadrado $\;EFGH\;$ e o terceiro vértice opostos de cada base é $\;L\;$ ou $\;M\;$. Isto quer dizer que construímos um sólido cujas faces são triângulos equiláteros iguais, ou seja, é um octaedro o que construímos.
  2. Falta-nos provar que os vértices do octaedro construído são pontos da superfície esférica de diâmetro igual a $\;AB.\;$ Assim provamos a seguir:
    1. Por construção, $EF=FG=GH=HE=DB$ e, como vimos, os triângulos de bases $\;EFL, \;FGL, \;GHL, \;HEL, \: EFM, \;FGM, \;GHM, \;HEM, \: $ são equiláteros de lados iguais a $\;DB.\;$
    2. Como $\;LK, \;KM,\;KE\;$ são iguais, a semicircunferência desenhada de diâmetro $\;LM\;$ também passa por $\;E.\;$ E pela mesma razão, o semicírculo rodando em torno de $\;LM\;$ fixo também passa pelos pontos $ \;F, G, H\;$ e o octaedro terá os seus vértices numa esfera de diâmetro $\;LM.\;$
    3. E dado que $\;LK=KM\;$ e $\;KE\;$ comum nos triângulos $\;LKE\;$ e $\;MKE\;$ ambos retângulos em $\;\hat{K}\;$, $\;LE=EM\;$
    4. E como, por construção $\;L\hat{E}M\;$ é reto por estar inscrito num semicírculo de diâmetro $\;LM, \;$ então $\;LM^2= 2 \times LE^2\;$
    5. E como, por construção, o triângulo $\;ADB\;$ é retângulo em $\; \hat{D}\;$ (inscrito no semicírculo) e $\;AD=DB\;$ então $\;AB^2=AD^2+DB^2, \;$ de onde retiramos que $AB^2=2\times DB^2$
    6. Por ser, como vimos, $\;LE =DB\;$, podemos dizer que $\;AB^2=LM^2= 2 \times LE^2$, de onde se conclui:
      $\;AB=LM\;\;$ e $\;\;AB^2 = 2 \times LE^2$
    Fica assim provado que a semicircunferência de diâmetro $\;LM\;$ gera uma esfera (a passar pelos vértices do octaedro construído) congruente com esfera dada - gerada pela semicircunferência de diâmetro $\;AB.\;$
    e também ficou provado que o quadrado de lado igual ao diâmetro de uma esfera dada é igual ao quadrado de lado igual à aresta do octaedro nela inscrito.           □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

26.6.15

Livro XIII: Construção de um tetraedro inscrito numa esfera.



Proposição 13:
Construir uma pirâmide regular (ou tetraedro), inscrevê-la numa dada esfera e mostrar que o quadrado do diâmetro da esfera é uma vez e meia o quadrado do lado (aresta) da pirâmide.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera (ou igual a ele) No nosso caso, tomámos mesmo um segmento que é o eixo da esfera gerada pelo semicírculo $\;(ADB)\;$
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=2.CB\;$ (Prop. 9 Livro VI (9.6))
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;AD\;$
  4. Tomámos um círculo $\;EFG\;$ de raio iguala $\;DC\;$ e tal que $\;HK\;$ é perpendicular a $\; AB \; $ tirada pelo centro $\;O\;$ do semicírculo $\;ADB\;$ e $\;HK= AC\;$ (de um modo mais geral só é preciso que $\;HK\;$ seja perpendicular ao plano do círculo $\;(EFG)\;$
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ genérico da circunferência $\;(H, \;DC)\;$ que, por isso, pode mover-se sobre ela em que inscrevemos um triângulo equilátero determinámos $\;EFG\;$ tais que $\;EF = EG = FG\;$
  6. Finalmente, traçamos os 6 segmentos $\;FE, \;EG, \;FG, \;KE, \;KF, \;KG\;$ que são certamente arestas de uma pirâmide triangular cujas faces são os 4 triângulos $\;EFG, \;KEF, \;KEG, \; KFG\;$
Será a pirâmide assim construída um tetraedro com os 4 vértices $\;K, \;E, \;F, G\;$ incidentes na superfície esférica gerada por uma semicírcunferência de diâmetro $\;AB?\;$ Falta demonstrar que é! E demonstrar que $\;AB^2 = \displaystyle \frac{3}{2}.AD^2.\;$

© geometrias. 23 de junho de 2015, Criado com GeoGebra

Demonstração:
  1. Da construção, sabemos que
    1. sendo $\;AC=2CB \; \text{e}\; AB=AC+CB, \; \text{então}\; AB=3CB\;$
    2. o ângulo $\;ADB\;$ é um reto por estar inscrito num semicírculo, ou seja, o triângulo $\;ABC\;$ é retângulo em $\;D\;$
    3. sendo $\;CD\;$ é altura relativa à hipotenusa $\;AB\;$ do triângulo retângulo $\;ADB\;$ de catetos $\;AD\;$ e $\;DB\;$. O triângulo $\;ABC\;$ tem os ângulos iguais cada um a cada um, a cada um dos triângulos em que está dividido por $\;CD,\;$ a saber : $\;ACD,\;DCB \;$.
    Por ser $\;ABD \sim DAC, \; \;\;\displaystyle \frac{AB}{AD}= \frac{DA}{AC}, \;$ ou seja, verifica-se que $\;\; AD^2=AB\times BC$
    Por construção $\; \displaystyle \frac{AB}{BC} = 3 \;$ que nos permite dizer que $\; \displaystyle \frac{AB\times BC}{BC\times BC} = \frac{AD^2}{BC^2} =3\;$ ou que $\;AD^2= 3 \times BC^2 .$
    (Note que estes resultados aparecem n'Os Elementos demonstrados geometricamente com recurso a figuras e operações como as de remover ou juntar (sem sobreposição) e retirar figuras congruentes ou iguais em área para obter novas figuras. É um bom exercício reconstruir esse processo, especialmente para os que parecem imediatos, vistos algebricamente, como é o último destes.)
  2. A pirâmide triangular construída é regular:
    1. Por construção, o raio da circunferência $\;(EFG)\;$ centrada em $\;H\;$ é igual a $\;CD, \;$ ou seja $\;CD=KE=KF=KG.\;$ e o triângulo $\;EFG\;$ é equilátero.
      Pela proposição 12, estudada no artigo anterior, garantimos que o quadrado de lado igual ao de um triângulo equilátero é triplo do quadrado do raio da circunferência em que se inscreve: No nosso caso, podemos escrever que $\;EF^2= 3\times KE^2 = 3 \times CD^2$.
      Fica assim claro que, $\;EF^2 = AD^2\;$ por serem ambos iguais a $\;3 \times CD^2\;$ e, finalmente, podemos dizer que $\;EF=AD\;$.
      A base $\;EFG\;$ da pirâmide construída é um triângulo equilátero de lado igual a $\;AD\;$
    2. Por construção, $\;HK\;$ é tomada sobre a perpendicular ao plano de $\;(EFG)\;$ e, por isso é perpendicular a todas as retas desse plano que incidam em $\;H\;$, ou seja: os triângulos $\;KEH, \; KFH,\; KGH\,$ são triângulos retângulos em $\;H\;$, sendo os seus catetos, por construção, iguais a $\;CD=KE\;$ e a $\;AC\;$
      Por isso, $\;KE^2 =KF^2=KG^2 = AC^2+ CD^2= AD^2$. Ou seja, os lados $\;KE,\;KF, \;KG\,$ destes triângulos retângulos são iguais $AD$ e iguais aos $\;EF, \;EG, \;FG\;$, para concluirmos que os triângulos $\;KEF, \;KFG, \;KGE,\; EFG\;$ são triângulos equiláteros de lados iguais a $\;AD\;$
    A pirâmide construída tem as seis arestas iguais e as quatro faces triângulares iguais entre si, equiláteras e equiangulares.
  3. Falta agora provar que os vértices da pirâmide construída incidem numa superfície esférica igual à de diâmetro $\;AB\;$.
    Por construção $\;HK=AC=2BC.\;$ Tome-se $\;L\;$ colinear com $\;H, \;K\;$ e tal que $\;HL=BC:\;$ Assim $\;KL=AB=AC+BC=3BC.\;$
    Assim como $\; \displaystyle \frac{AC}{CD} = \frac{CD}{CB} , \;$ também $\;\displaystyle \frac{KH}{HE} = \frac{HE}{HL},\;$ já que $\;HK=AC, \; HE=CD, \; HL=CB \,$ e $\;KH\times HL=HE^2,\;$ para além de cada um dos ângulos $\;K\hat{H}E, E\hat{H}L\;$ ser reto, ficando garantido que o semicírculo de diâmetro $\;KL\;$ passa por $\;E\;$. Se considerarmos fixado o diâmetro $\;KL,\;$ no movimento volta inteira do semicírculo em torno de $\;KL\;$, o semicírculo passará pelos pontos $\;F,\;G\;$ já que $\;FL\;$ e $\;LG\;$ acompanham o movimento rigidamente e os ângulos em $\;F \;$ e em $\;G\;$ se tornam retos e a pirâmide é compreendida pela esfera dada já que para $\;KL, \;$ o diâmetro da esfera é igual ao diâmetro $\;AB\;$ da esfera dada e $\;KH\;$ foi construído igual a $\;AC \;$ e $\;HL\;$ igual a $\;CB.\;$
  4. Só nos falta provar que o quadrado do diâmetro da esfera é igual a uma vez e meia o quadrado do lado da pirâmide.
    Como $\;AC=2\times CB, \;\;\; AB= 3 \times CB\;$ e $\;\displaystyle \frac{AB}{AC} = \frac{3}{2}\;$ ou $\; AB=1,5 \times AC.\;$
    Ao mesmo tempo, $\; \displaystyle \frac{BA}{AC} =\frac{BA^2}{AD^2}\;$. Portanto $$\; \displaystyle \frac{BA^2}{AD^2} = \frac{3}{2}\;$$ ficando assim provado que o quadrado sobre o diâmetro $\;AB\;$ da esfera é uma vez e meia o quadrado sobre a aresta $\;AD.\;$ □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements