Mostrar mensagens com a etiqueta Platão. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Platão. Mostrar todas as mensagens

23.8.15

Elementos: Construir um icosaedro (Proposição 16 do Livro XIII)


Proposição 16:
Construir um iscosaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;AB\;$ a azul na figura em que também tomamos um ponto $\;C\;$ do diâmetro tal que $\;AC+CB=AB\;$ e $\;AC=4\times BC\;$ e um ponto $\;D\;$ da semicircunferência $\;ADB\;$ tal que $\; A\hat{C}D\;$ seja reto. Ficam traçados também a azul $\;CD, \;DB,\;$, este último presente em todos os passos da construção. Passos da construção:
  1. Tomamos uma circunferência de raio $\;DB\;$, e sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  2. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$ Desta circunferência, na nossa construção, designamos por $\;V\;$ o seu centro.
    A circunferência de raio $\;DB\;$ e centro em $\;W\;$ em que se inscreve $\;QRSTU\;$ está num plano paralelo ao plano de $\;EFGHK\;$ ou $\;LMNOP\;$, sendo $\;EQ=VW=VE=DB. \;$

    © geometrias. 2 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\; UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    E, como $\;QL^2=EL^2+QE^2,\; QL\;$ pode ser visto como lado do pentágono inscrito em $\;(I, DB), \;$ do qual $\;OP, \; \;LP,\;$ também podem ser vistos como lados, o triângulo $\;QLP\;$ é equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
    Como já tínhamos visto, $\;QRSTU\;$ é um pentágono equilátero de lados paralelos e iguais ao pentágono inicial $\;EFGHK\;$ e assim são equiláteros (por terem lados comuns aos dos triângulos anteriormente referidos de que são iguais) os triângulos $\; LQR, \;MRS, \;NST, \;OTU.\;$
  3. Sobre a reta que passa pelos centros $\;V,\; W\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;V,\;X\;$ e $\;W,\;Z.\;$ Como $\;VX\;$ é o lado do decágono e $\;VP\;$ é o lado do hexágono (raio), sendo $\;X\hat{V}P\;$ um ângulo reto, então $\;PX\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LX = MX=NX=OX=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(V, VP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;XLM, \;XMN, \;XNO, \;XOP, \;XPL,\;$ e iguais a $\;PQL, \ldots\;$
  4. De igual modo se provaria que são iguais aos anteriores os triângulos $\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ.\;$

Temos assim um sólido limitado por uma superfície fechada composta por 20 triângulos iguais entre si e equiláteros, a saber
$\;XLM, \;XMN, \;XNO, \;XOP, \;XPL;\;\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ;\; \;LRM,\; MSN, \; NTO,\; OUP,\;PQL;\;$ $ \; LQR, \;MRS, \;NST, \;OTU,\;PUQ,\;$ que são as 20 faces; de lados $\;XL, \;XM, \;XN,\; XO, \; XP; \;PL,\; LM, \;MN, \;NO, \; OP; \;PQ, \;QL, \;LR, \;RM,\;MS,\;SN,\;NT,\;TO,\;OU,\;UP;\;$ $\; QR,\;RS,\; ST,\;TU,\;UQ;\;QZ,\;RZ,\;SZ,\;TZ,\;UZ,\;$ que são as 28 arestas; cujos extremos são $\;V, \;L, \;M, \;N, \;O, \;P, \;Q, \;R, \;S, \;T, \;U, \;W,\;$ que são os 12 vértices do icosaedro.



Falta provar que este icosaedro está encapsulado (ou inscrito?) numa esfera gerada por um semicírculo de diâmetro $\;AB\;$:
Por construção, sabemos que $\;XV=WZ=PE,\; VW=DB\;$ (respetivamente lado do decágono e lado do hexágono regulares inscritos na mesma circunferência em que se inscreve o pentágono $\;EFGHK.\;$ Por isso, $\;VZ =VW+WZ\;$ é dividido pelo ponto $\;W\;$ em média e extrema razão (prop. XIII.9 : se os lados de um hexágono e de um decágono inscritos num mesmo círculo forem acrescentados um ao outro, obtém-se um segmento de reta que fica dividido em média e extrema razão pelo ponto de junção, sendo a parte maior o lado do hexágono) o que pode ser descrito por $$\; \displaystyle \frac{VZ}{VW}= \frac{VW}{WZ}.$$
  1. Consideremos os segmentos $\;ZE, \;EV, \;EX, \;$ para além de $\;XZ, \;XV,\;VW, \;WZ, \;VZ,\; $ os triângulos $\;ZVE, \;XVE,\;ZEX\;$ e os ângulos $\;Z\hat{V}E, \;X\hat{V}E,\;$ retos, por construção. Como $\;VW=VE=EQ=DB\; $ e $\;WZ=VX=PE,\;$ a expressão acima permite-nos escrever $\; \displaystyle \frac{VZ}{VE}= \frac{VE}{VX}\;$ relacionando lados dos triângulos $\;ZVE, \;XVE,\;ZEX\;$ que, por isso, os dois primeiros são triângulos retângulos em $\;V\;$ e o terceiro é retângulo em $\;E\;$ de altura $\;VE = DB\;$, semelhantes entre si (VI.8). O ponto $\;E\;$ é pois um ponto da semicircunferência de diâmetro $\;XZ\;$. A mesma semicircunferência passa por $\;Q\;$ (já que, obviamente e do mesmo modo, o triângulo $\;XQZ\;$ é retângulo em $\;Q\;$ e de hipotenusa $\;XZ\;$ e com $\;QW=DB.\;$ E, mantendo fixo o diâmetro (eixo) $\;XZ,\;$, a semicircunferência passará por todos os pontos angulares (vértices) do icosaedro construído, ao rodar em torno de $\;XZ.\;$
    Fica assim provado que o icosaedro construído está encapsulado numa esfera de diâmetro $\;XZ.\;$ Será esta esfera de diâmetro $\;AB ? \;$
    • Sabemos que $$\frac{VZ}{VW}= \frac{VW}{WZ} \Leftrightarrow VW^2 = VZ \times WZ $$ Consideremos o ponto $\;J\;$ médio de $\;VW\;$ que é também o ponto médio de $\;XZ=XV+VW+WZ\;$ já que $\;XV=WZ\;$. Prova-se que, sendo $\;VW\;$ o maior na divisão, por $\;W\;$ de $\;VZ\;$ em média e extrema razão, o quadrado do menor $\;WZ\;$ acrescentado de metade do maior $\;JW\;$ é 5 vezes o quadrado deste: $$(JW+WZ)^2 =5 \times JW^2$$ o que é fácil de verificar. (Assim: $\;VW=2\times JW, \;$ então $\;VW^2= 4\times JW^2 \;\;$ e, como antes tínhamos visto, $\;VW^2= VZ \times WZ.\;$ Conclui-se que $ \; 4\times JW^2 = VZ \times WZ. \;$ Como $\;VZ=VW+WZ \;$ e $\;VW=2\times JW,\;$ podemos escrever $ \; 4\times JW^2 = (VW+WZ)\times WZ = VW\times WZ +WZ^2 =2\times JW\times WZ+WZ^2,\;$ e, concluindo $JZ^2 = (JW+WZ)^2 = JW^2 + WZ^2 + 2JW\times WZ = JW^2+4\times JW^2 = 5\times JW^2.\;$)
      Sendo $\;JZ^2=5\times JW^2,\;$ como $\;XZ=2\times JZ \;$ e $\;VW= 2\times JW\;$, $\;XZ^2 = 5\times VW^2.\;$


    • Dos dados iniciais, lembramos um triângulo $\;ADB\;$ retângulo em $\;D\;$ e de hipotenusa $\;AB\;$, sendo $\;CD\;$ a altura a ela relativa e $\;C: AC=4CB.\;$
      São semelhantes entre si os triângulos retângulos $\;ABD, \;DAC, \;BDC\;$. Da semelhança $\;ABD \sim BDC\;$ retiramos $\; \displaystyle \frac{AB}{BD} = \frac{BD}{BC}\;$ ou $\;BD^2 = AB\times BC\;$.
      Como $\;AB =AC+CB\;$ e $\;AC=4\times CB, \; AB= 5\times BC ou \displaystyle BC = \frac{AB}{5}.\;$
      Podemos agora escrever que $\;5\times BD^2= AB^2.\;$ E como $\;VW=DB\;$, concluímos assim que $\;AB^2 = XZ^2\;$ e $\;AB=XZ.$
Fica assim demonstrado que o icosaedro construído está encapsulado numa esfera de diâmetro de comprimento $\;AB.\;$

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.7.15

Relações entre tetraedro e cubo inscritos numa mesma esfera.


As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
  1. o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
  2. sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
  3. para o tetraedro inscrito, a aresta é $\;AD ;\;$
  4. para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
Em (XIII.13) vimos que $\;AB^2=\displaystyle \frac{3}{2}AD^2\;$ e, em (XIII.15), vimos que $\;AB^2=3DB^2\;$. Em consequência, de $\;\displaystyle \frac{3}{2}AD^2 = 3DB^2\;$ se retira que $\;AD^2=2DB^2,\;$ ou seja que $\;AD\;$ é o comprimento da diagonal de um quadrado de lado igual a $\;DB\;$. Assim vimos que a aresta de um tetraedro inscrito numa esfera de diâmetro dado tem comprimento igual à diagonal da face do cubo inscrito na mesma esfera.

© geometrias. 23 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.

Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements