28.12.11

Pavimentações do plano por polígonos regulares (triângulos e hexágonos)

Apresentamos, nesta entrada, pavimentações com ladrilhos regulares: triângulos e hexágonos e em que dois ladrilhos ou não se intersetam ou quando se intersetam o fazem num vértice comum ou num lado comum.

Na primeira destas pavimentações, há vértices rodeados por dois triângulos e de dois hexágonos (2x60+2x120=360) e vértices rodeados por 3 hexágonos (3x120=360).





Na segunda, cada um dos vértices está rodeado por dois triângulos e dois hexágonos (2x60+2x120=360).
Ter vértices da mesma espécie é uma propriedade de que gozam infinitas pavimentações e é mantida sempre que o padrão é obtido por translações, aplicadas a um friso, associadas a um dado vetor independente daquele que está associado ao friso.






Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.

Pavimentações do plano por polígonos regulares sem lados comuns

Apresentámos inicialmente pavimentações regulares com um só tipo de ladrilho poligonal e em que dois ladrilhos ou não se intersetam ou quando se intersetam o fazem num vértice comum ou num lado comum.

Apresentamos, nesta entrada, pavimentações em que os ladrilhos são polígonos regulares mas em que acontece não haver dois com lados comuns.


No caso, geradas usando meias voltas,

  • uma com triângulos equiláteros e hexágonos regulares (pgg)





  • e outra com 2 quadrados diferentes(p4g)





Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.

24.12.11

o geometrias está a entrar no oitavo ano...




... de grandes festas. BOAS FESTAS.

Pavimentações do plano por polígonos irregulares

De entre as pavimentações apresentados em entradas anteriores, encontram-se vários exemplos de pavimentações, com um só tipo de ladrilhos, uns côncavos outros convexos. De entre estes últimos, destacamos os retângulos que pavimentam. Pavimentações como essa de ladrilhos retangulares tomam o nome de pavimentações irregulares.

Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.
Qualquer triângulo pavimenta o plano. br>




E também um quadrilátero qualquer pavimenta o plano (padrão p2) como pode ver-se.




Já o hexágono irregular pavimenta se tiver um centro de simetria (de novo, padrão p2).
Deslocar o po







Apresenta-se ainda um caso notável de pavimentação do plano conhecida por pavimentação "Cairo". Pentágonos equiláteros não regulares pavimentam o plano, já que quatro desses pentágonos formam um hexágono irregular com um centro de simetria.



23.12.11

Pavimentações regulares de polígono regulares iguais

De entre as pavimentações apresentados nas entradas precedentes, encontram-se vários exemplos de pavimentações (com um só tipo de ladrilhos) de entre os quais destacamos os quadrados (p4m) que pavimentam. Pavimentações como essa de ladrilhos quadrados tomam o nome de pavimentações regulares em que cada vértice é vértice de 4 ângulos retos (4x90=360) ou de 4 quadrados (todos os vértices são da mesma espécie 4.4.4.4).
Nestas pavimentações, podemos chamar vértices da pavimentação aos vértices dos ladrilhos.
Claro que um triângulo equilátero (e equiangular) pavimenta o plano. Cada vértice de um ladrilho (triangular regular) é vértice de seis ladrilhos ou vértice de 6 ângulos de 60 graus (6x60=360) ou vértice de 6 triângulos regulares (todos os vértices são da mesma espécie 3.3.3.3.3.3)

Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.


Também o hexágono regular pavimenta o plano. Cada vértice de um ladrilho hexagonal regular é vértice de 3 ângulos de 120 graus (ângulo interno do hexágono regular)(3x120=360) ou é vértice de 3 hexágonos regulares (todos os vértices são da mesma espécie 6.6.6) .
Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.




O mesmo não podemos dizer do pentágono regular que tem um ângulo interno de 72 graus e 360 não é múltiplo de 72.

19.12.11

Simetrias dos padrões do plano, simetrias das pavimentações - rotações de grau 6

Apresentamos ilustrações dos grupos que admitem simetrias de rotação de grau 6 (e consequentes simetrias de rotação de grau 2 e 3).

GRAU 6

p6


Sem eixos de simetria

p6m


Com eixos de simetria


15.12.11

Simetrias dos padrões do plano, simetrias das pavimentações - rotações de grau 3

Apresentamos ilustrações dos grupos que admitem simetrias de rotação de grau 3 apenas.

GRAU 3

p3

Sem eixos de simetria



p3m1

Todos os centros de grau 3 estão em eixos de simetria

p31m

Um eixo de simetria não passa por quaisquer dos centros de grau 3


14.12.11

Simetrias dos padrões do plano, simetrias das pavimentações - rotações de grau 4

Apresentamos ilustrações dos grupos que só admitem simetrias de rotação de grau 4 (e consequentes simetrias de meia volta, compostas de rotações de 90º).

GRAU 4

p4

Sem eixos de simetria



p4m

Um eixo de simetria passando por centros de grau 4

p4g

Um eixo de simetria não passa por quaisquer dos centros de grau 4


11.12.11

Simetrias dos padrões do plano, simetrias das pavimentações - rotações de grau ≤ 2

Apresentamos ilustrações dos grupos que não admitem simetrias de rotação de grau superior a 2.

SÓ CENTROS DE GRAU 2

p2

Sem simetrias de reflexão ou reflexão deslizante

cmm

Alguns dos centros das meias voltas não estão sobre eixos de simetria

pmm

Todos dos centros das meias voltas estão sobre eixos de simetria

pmg

Os eixos de simetria são todos paralelos


pgg

Não há eixos de simetria. Há simetrias de reflexão deslizante


10.12.11

Grupos de simetrias dos padrões do plano e simetrias das pavimentações- GRAU 1

Como podemos facilmente verificar uma parte das ilustrações dos grupos de simetrias do plano apresentadas como padrões de papel de parede ilustram diferentes pavimentações do plano (para a definição feita na entrada anterior). Para além de outras, assim acontece com as últimas ilustrações dos exercícios de identificação (tendo F como motivo mínimo), publicados recentemente. Em Martin, G. Transformation Geometry: and introduction to symmetry. Springer-Verlag, N.Y: 1982, o estudo dos grupos de simetria do plano (que antecede o estudo das pavimentações) é concluído com uma síntese da tabela classificativa dos padrões do plano, usando como ilustração de cada grupo uma pavimentação do plano.
Pensamos que, para a classificação dos 17 padrões do plano pode ser uma grande ajuda rever a tabela algorítmica acompanhada destas ilustrações. E é um bom começo para estudar pavimentações poligonais do plano. Como se sabe, estas classificações foram feitas tomando por base que um padrão do plano tem sempre no seu grupo de simetrias, translações associadas a dois vetores u e v independentes ou associadas a m.u+n.v, com m e n inteiros e as restrições no que respeita às simetrias de rotação. A rotação de grau 1, identidade - rotação de 360.k graus com k inteiro, está sempre presente em todos os padrões, mas, para além dessa,m grupos de simetria de padrões do plano, só são admissíveis rotações de grau 2 (180.k ou meias voltas), de grau 3 (120.k), de grau 4 (45.k) e as de grau 6 (60.k).

Começamos com as ilustrações dos grupos que não admitem rotações de grau superior a 1. Assim:

ROTAÇOES DE GRAU 1

p1

Sem simetrias de reflexão ou reflexão deslizante

cm

Com simetrias de reflexão e reflexão deslizante (rd); alguns dos eixos de (rd) não são espelhos

pm

Com simetrias de reflexão e reflexão deslizante (rd); todos eixos de (rd) são espelhos

pg

Sem simetrias de reflexão, mas com simetrias de reflexão deslizante.

Voltamos a lembrar que em todos os grupos de simetrias dos padrões dos planos há simetrias de translação...

9.12.11

Pavimentação com regiões poligonais

Chamamos região poligonal (referida como polígono) a uma região contendo a sua própria fronteira, sendo esta uma linha poligonal fechada ou conjunto de segmentos de reta em que cada um dos extremos de um dos seus segmentos é extremo de outro segmento do conjunto. Dizemos que um conjunto P de polígonos {Pn: n ∈N} é uma pavimentação do plano quando, para cada ponto do plano existe pelo menos um polígono de P que o contém e, no caso de um ponto pertencer a mais que um polígono, está sobre a fronteira comum aos polígonos que o contêm. Dito de outro modo, a reunião dos polígonos de P é o plano e são vazias as interseções de interiores de polígonos de P. Chamamos interior de um polígono Pn ao conjunto dos seus pontos que não estão na fronteira.


As próximas publicações tratam de pavimentações poligonais. Natural é que, numa pavimentação, chamemos ladrilhos aos polígonos que a compõem e que as classificações (e a terminologia) associadas aos polígonos sejam usadas no estudo das pavimentações.

3.12.11

Exercícios de identificação (11)




(exercícios propostos em Martin, G. Transformation Geometry: and introduction to symmetry. Springer-Verlag, N.Y: 1982)
Pensamos ter resolvido bem estes exercícios, mas, ... quem sabe?

1.12.11

Exercícios de identificação (10)




(exercícios propostos em Martin, G. Transformation Geometry: and introduction to symmetry. Springer-Verlag, N.Y: 1982)

29.11.11

Exercícios de identificação (9)




(exercícios propostos em Martin, G. Transformation Geometry: and introduction to symmetry. Springer-Verlag, N.Y: 1982)

27.11.11

Exercícios de identificação (8)




(exercícios propostos em Martin, G. Transformation Geometry: and introduction to symmetry. Springer-Verlag, N.Y: 1982)

25.11.11

Exercícios de identificação (7)




22.11.11

Exercícios de identificação (6)




21.11.11

Exercícios de identificação (5)




17.11.11

Exercício de identificação (5)




14.11.11

Exercícios de identificação (3)




10.11.11

Exercícios de identificação (2)




8.11.11

Exercícios de identificação (1)

Vamos apresentar algumas ilustrações e esperar que consigam identificar as simetrias dos grupos a elas associados, bem como a classificação do padrão em jogo.



31.10.11

Simetrias do plano - webibliografia

Algumas fontes sobre isometrias e simetrias do plano

  1. Algumas ligações úteis
    1. Symmetries of Culture- Donald Crowe
    2. http://euler.slu.edu/escher/index.php/Wallpaper_Patterns#Wallpaper_Patterns
    3. http://www.oswego.edu/~baloglou/103/seventeen.html
    4. http://clowder.net/hop/17walppr/17walppr.html
    5. Atractor - Simetrias
    6. Eduardo Veloso - GSP
    7. Eduardo Veloso
    8. Lopes, Isabel Cristina da Silva; GRUPOS CRISTALOGRÁFICOS E ORBIFOLDS EUCLIDIANOS BIDIMENSIONAIS. Dissertação de Mestrado (usar pesquisa simples pelo título). Porto:2009
    9. Brochura de Geometria NPMEB
    10. Bibliografia sobre transformações geométricas e Simetria APM/ESE Lisboa

  2. Alguns livros
    1. Martin,G.E. Transformatio Geometry - An. Introduction to Symmetry A.M.S.Springer- Verlag, N.York:1982
    2. Veloso, E. Geometria: Temas actuais ME / IIE, Lisboa:1998
    3. Bellingeri P., Dedò M., Di Sieno S., Turrini C. O ritmo das formas (Trad. Maria Pires de Carvalho) Atractor. Porto:
    4. Gómez, R P., Vivo La Alhanbra,Proyecto Sur de Ediciones, S.AL., Granada:1990.
    5. Farmer, D.W. Groups and Symmetry - A guide to discovering Mathematics American Mathematical Society. Providence:1996
    6. Coxeter, H.M.S; Moser, W.O.TJ. Generators and Relations for Discrete Groups Springer-Verlag, NY:1979
    7. Washburn, D.; Crowe, D. Symmetries of culture: Theory and Practice of Plane Pattern Analysis University of Washington Press.Seatle: 1988
    8. Garfunkel, S. (coord) For all practical purposes(3rd ed.) COMAP.Freeman. NY:1988

30.10.11

Os 17 padrões do plano: uma classificação muito usada

Há 17 padrões cristalográficos do plano. Em cada uma das 17 entradas (artigos) anteriores ilustrámos cada um deles com construções dinâmicas feitas em Geogebra, aplicação (de uso livre e livre de custos) recomendada no programa do ensino básico de matemática.

Esta entrada tem por objetivo único apresentar uma lista (tabela classificativa) que nos permita enumerar (distinguindo cada um) todos os 17 tipos. Assim:

Se o maior grau das simetrias de rotação do padrão do plano é:

  • 1 [360º - identidade(1)]
    • com simetrias de reflexão
      • e com simetrias de reflexão deslizante : cm
      • e sem simetrias de reflexão deslizante : pm
    • sem simetrias de reflexão
      • e com simetrias de reflexão deslizante: pg
      • e sem simetrias de reflexão deslizante : p1

  • 2 [180º - meia volta(2x180=360)]
    • com simetrias de reflexão
      • em duas direções
        • e com todos os centros de rotação sobre eixos de reflexão: pmm
        • nem todos os centros de rotação sobre eixos de reflexão: cmm
      • numa só direção: pmg
    • sem simetrias de reflexão
      • e com simetrias de reflexão deslizante: pgg
      • e sem simetrias de reflexão deslizante : p2

  • 3 [120º (3x120=360)]
    • com simetrias de reflexão
      • e com todos os centros de rotação sobre eixos de reflexão: p3m1
      • e nem todos os centros de rotação sobre eixos de reflexão: p31m
    • sem simetrias de reflexão: p3

  • 4 [90º (4x90=360)]
    • com simetrias de reflexão
      • com eixos de reflexão a intersetar-se a 45º:p4m
      • sem eixos de reflexão a intersetar-se a 45º: p4g
    • sem simetrias de reflexão: p4

  • 6 [60º (6x60=360)]
    • com simetrias de reflexão: p6m
    • sem simetrias de reflexão: p6


28.10.11

Para além das simetrias de translação, simetrias de reflexão, de reflexão deslizante e de meia volta



Na ilustração que se segue, mostramos a região fundamental (com todos os seus elementos) do trabalho para a nossa última das ilustrações dos 17 padrões cristalográficos do plano.



Neste caso, o motivo mínimo é o triângulo com um vértice assinalado a verde e todos os tipos de simetrias do padrão estão no losango cinzento: as diagonais a cheio são os espelhos perpendiculares, os lados não aparecem como tal e não têm qualquer papel, para além de termos tomado os vetores (um a verde -u- outro a vermelho-v-) das translações com as suas direçoes e comprimento. Os pontos a cheio sobre os espelhos são centros de meias voltas (compostas de reflexões de eixos perpendiculares). Os segmentos a tracejado correspondem a reflexões deslizantes (composta de .5(u+v) com o espelho vertical e de .5(u-v) com o eixo horizontal) e os pontos abertos sobre estes segmentos tracejados são centros de meias voltas que não estão sobre espelhos e resultam da composição de reflexões deslizantes de eixos perpendiculares. Claro que também a identidade está sempre presente, embora já nem nos referiramos a ela.
Fica assim bem claro que para a produção da ilustração deste grupo de simetrias do plano não usámos mais que o motivo mínimo e como transformações geradoras as reflexões relativas às diagonais e as translações associadas aos vetores combinações de u e v. Podia ser de outro modo, mas realçamos os dois espelhos mm que vão aparecer na classificação.
Com os seus espelhos perpendiculares e translações o padrão pmm é muito parecido, mas então não partimos de uma região fundamental rômbica e é, por isso, radicalmente diferente deste. Todos os centros das meias voltas em pmm estão sobre eixos de reflexão.
Esclarecemos assim que a (unidade mínima ou) região fundamental e o motivo mínimo determinam cada um dos padrões do plano (ou grupos de simetrias planas) que têm em comum a existência de translações associadas a dois vetores independentes.
Na ilustração dinâmica que apresentamos a seguir pode reproduzir passo a passo a construção, clicando sobre as teclas $>>$ para andar para a frente ou $<<$ para andar para trás que aparecem ao fundo. No fim terá interesse movimentar o motivo mínimo para obter diferentes (con)figurações(?), o que é muito divertido. Com as cautelas ou a compreensão sobre as alterações que provoca e as nossas quase óbvias limitações de construção, pode mudar a região mínima e ver o que acontece.... A classificação deste grupo de simetria é
cmm

26.10.11

Para além das simetrias de translação, simetrias de reflexão deslizante e de reflexão

No padrão do plano (papel de parede) que se segue, temos uma ilustração de um grupo de simetrias do plano em que, para além de simetrias de translação associadas a combinações lineares de dois vetores (v e w) de diferentes direções e de comprimentos iguais - losango, usámos a reflexão relativa à diagonal menor e uma reflexão deslizante com a mesma direção da diagonal menor (no caso paralela tirada pelos pontos médios dos lados do losango).
O motivo mínimo é

Sobre o papel de parede
  • podemos ver um ponto verde que lhe permite obter diversas ilustrações do mesmo padrão (deslocando só o motivo mínimo).
  • um botão clik que ao ser clicado, mostra vetores das translações sobre os lados do losango, o vetor a amarelo tracejado associado à reflexão deslizante e, a cheio, o espelho da reflexão todos eles associados a simetrias do padrão plano.
Repare-se que o vetor u da reflexão deslizante não tem a direção de v ou w, embora tenha a direção de alguma das combinações de v e w, v-w. E também que a reflexão deslizante tem eixo paralelo ao do espelho da reflexão. Se os eixos fossem concorrentes, as compostas seriam rotações. Este padrão não admite pois simetrias de rotação (para além da trivial identidade). Os outros padrões do plano que não admitiam simetrias de rotação já foram todos ilustrados em entradas sucessivas. Foram eles p1, pm e pg. Este é um caso diferente destes e, tendo simetrias de reflexão (m) e de reflexão deslizante (g) com eixos paralelos é completamente diferente de pmg que, ainda que podendo ser gerado pelas mesmas isometrias, admite simetrias de rotação. Este é classificado classificado diferentemente como

cm


Parece-nos que a ilustração mais adequada para este diferente tipo de papel de parede reside na construção do telhado tendo para motivo mínimo a meia telha

que apresentamos a seguir e em que, usando os botões de navegação ao fundo, pode seguir o processo utilizado



21.10.11

Além das simetrias por translação, simetrias por rotação de 120, reflexões e reflexões deslizantes


No padrão do plano (papel de parede) que se segue, temos uma ilustração de um grupo de simetrias do plano em que, para além de simetrias de translação associadas a combinações lineares de dois vetores de diferentes direções e de comprimentos iguais - losango de dois triângulos equiláteros, usámos reflexões relativas às mediatrizes dos lados dos triângulos e rotações de $120^o$ centradas no centro de um dos triângulos equiláteros (sobre o motivo mínimo). Assim gerado, ficamos com outras simetrias além dessas: simetrias de reflexão, de rotações de $120^o$ reflexões deslizantes
O motivo mínimo é

Sobre o papel de parede
  • podemos ver um ponto verde que lhe permite obter diversas ilustrações do mesmo padrão (deslocando só o motivo mínimo).
  • um botão que ao ser clicado, mostra vetores, exemplos dos centros de rotação de 120, eixos de reflexão a cheio e de reflexo deslizante a tracejado, todos eles associados a simetrias do padrão plano.
À semelhança de p3 em que 3 se referia âs rotações de amplitude $120^o$, a classificação deste padrão pode ser

p3m1
em que o m da 3ª posição se refere à simetria de reflexão


19.10.11

Além das simetrias por translação, simetrias por rotação de 120 e 180, reflexões e reflexões deslizantes


No padrão do plano (papel de parede) que se segue, temos uma ilustração de um grupo de simetrias do plano em que, para além de simetrias de translação associadas a combinações lineares de dois vetores de diferentes direções e de comprimentos iguais - losango de dois triângulos equiláteros, usámos rotações de $120^o$ com centro no centro de um dos triângulos equiláteros e posterior reflexão relativa a uma das diagonais - lado comum aos dois tringulos. Assim gerado, ficamos com outras simetrias além dessas: simetrias de reflexão, de rotações de $120^o$ e reflexões deslizantes.
O motivo mínimo é

Sobre o papel de parede
  • podemos ver um ponto verde que permite obter diversas ilustrações do mesmo padrão (deslocando só o motivo mínimo).
  • um botão que ao ser clicado, mostra vetores, exemplos dos centros de rotação de 120, eixos de reflexão a cheio e de reflexo deslizante a tracejado, todos eles associados a simetrias do padrão plano.
À semelhança de p3 em que 3 se referia âs rotações de amplitude $120^o$, a classificação deste padrão pode ser

p31m
em que o m da 4ª posição se refere à simetria de reflexão

17.10.11

Para além das simetrias de translação, rotações de 60, 120, 180, ... e reflexões




No padrão do plano (papel de parede) que se segue, temos uma ilustração de um grupo de simetrias do plano em que, para além de simetrias de translação associadas a combinações lineares de dois vetores de diferentes direções e de comprimentos iguais - losango de dois triângulos equiláteros, usámos rotações de $60^o$ com centro nos vértices do losango e uma reflexão relativa a uma das diagonais. Assim gerado, ficamos com outras simetrias além dessas: simetrias de reflexão, de rotações de $120^o$ e meias voltas (autónomas daquelas que se obtêm por rotações sucessivas de $90^o$)
O motivo mínimo é

Sobre o papel de parede
  • podemos ver um ponto verde que lhe permite obter diversas ilustrações do mesmo padrão (deslocando só o motivo mínimo).
  • um botão que ao ser clicado, mostra vetores, centros de rotação de 60(, 120,180 e 240), centros de rotações de 120 e 240, centros de meias voltas, eixos de reflexão, todos eles associados às simetrias do padrão plano.
À semelhança de p6 em que 6 se referia âs rotações de amplitude $60^o$, a classificação deste padrão pode ser

p6m
em que o m da 3ª posição se refere às simetrias de reflexão

12.10.11

Para além das simetrias de translação, simetrias de rotação de 90º, reflexão, reflexão deslizante e meias voltas


No padrão do plano (papel de parede) que se segue, temos uma ilustração de um grupo de simetrias do plano em que, para além de simetrias de translação associadas a combinações lineares de dois vetores perpendiculares e de comprimentos iguais - quadrado, usámos rotações de $90^o$ com centro nos vértices do quadrado e uma reflexão "horizontal" relativa aos segmentos. Assim gerado, ficamos com outras simetrias além dessas: simetrias de reflexão vertical, de reflexão deslizante e de meias voltas (autónomas daquelas que se obtêm por rotações sucessivas de $90^o$).
O motivo mínimo é

Sobre o papel de parede
  • podemos ver um ponto azul que lhe permite obter diversas ilustrações do mesmo padrão (deslocando só o motivo mínimo).
  • um botão que ao ser clicado, mostra vetores, centros de rotação de 90(, 180 e 270), centros de meias voltas, eixos de reflexão (4 direções a cheio), eixos de reflexão deslizante (duas direções a tracejado), todos eles associados às simetrias do padrão plano.
À semelhança de p4 em que 4 se referia âs rotações de amplitude 90 (4), a classificação deste padrão pode ser

p4m
em que o m da 3ª posição se refere às simetrias de reflexão

11.10.11

Para além das simetrias de translação, simetrias de reflexão e reflexão deslizante e meias voltas

No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m.\vec{u}+n.\vec{2v}$ ($m,n \in \mathbb{Z}$), há simetrias de reflexão deslizante associada ao vetor $\vec{v}$ e reflexões associadas a espelhos com as direções de $\vec{u}$ (perpendicular à direção de $\vec{v}$).
O motivo mínimo é

Sobre o papel de parede
  • podemos ver os vetores $\quad \vec{u}, \vec{v} \quad$, associados às simetrias de translação referidas acima, que já não ilustramos por óbvias, como óbvias são as simetrias de reflexão e de reflexão deslizante.
  • deixamos ainda um ponto vermelho que, ao ser deslocado, ilustra uma das simetrias de meia volta de centro também visível; como exercício sugerimos procurar a posição dos centros de outras meias voltas que não estão sobre eixos de reflexão.
À semelhança de pm em que m se referia âs reflexões de espelhos verticais, a classificação deste padrão do plano pode ser

pmg
em que o g da 3ª posição se refere às reflexões deslizantes associadas a $\vec{v}$


6.10.11

Para além das simetrias de translação, simetrias de reflexão e meias voltas




No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m.\vec{u}+n.\vec{v}$ ($m,n \in \mathbb{Z}$), há simetrias de reflexão associadas a espelhos perpendiculares, aliás com as direções de $\vec{u}$ e $\vec{v}$. O comprimento destes vetores está relacionado com a distância entre espelhos paralelos consecutivos (verticais para $\vec{u}$ e horizontais para $\vec{v}$).
O motivo mínimo é

Sobre o papel de parede
  • podemos ver os vetores $\quad \vec{u}, \vec{v} \quad$, associados às simetrias de translação referidas acima, que já não ilustramos por óbvias, como óbvias são as simetrias de reflexão.
  • deixamos ainda um ponto verde que, ao ser deslocado, ilustra uma das simetrias de meia volta de centro também visível e como exercício sugerimos procurar a posição dos centros de outras meias voltas que estarão todos sobre eixos de reflexão.
À semelhança de pm em que m se referia âs reflexões de espelhos verticais, a classificação deste padrão do plano pode ser

pmm
em que o m da 3ª posição se refere às reflexões de eixos horizontais

5.10.11

Para além das simetrias de translação, simetrias de reflexão deslizante e meias voltas

No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m.2\vec{u}+n.2\vec{v}$ ($m,n \in \mathbb{Z}$), temos simetrias de reflexões deslizantes associadas aos vetores $\vec{u}$ e $\vec{v}$ ortogonais. O motivo mínimo é (uma outonal folha)

Sobre o papel de parede
  • podemos ver os vetores $\quad 2\vec{u}, 2\vec{v} \quad$, associados às simetrias de translação referidas acima, em parte ilustradas se deslocar os pontos vermelho e azul e, ao mesmo tempo,
  • ver uma ilustração de pobre confirmação das simetrias de reflexão deslizante associadas aos vetores $\vec{u},\vec{v}$;
  • deixamos ainda um ponto verde para dar um cheiro de uma simetria de meia volta e como exercício sugerimos procurar a posição dos centros das meias voltas
À semelhança de pg em que g se refere a reflexão deslizante, a classificação deste padrão do plano pode ser

pgg


21.9.11

Para além das simetrias de translação, simetrias rotacionais associadas a 60 graus




No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m\vec{u}+n\vec{v}$ ($m,n \in \mathbb{Z}$), temos simetrias de rotação associadas a um ângulo de $60^o$ de amplitude. O motivo mínimo é

Clicando sobre os botões
  • vetores - podemos ver o vetor u e o vetor v, associados às simetrias de translação referidas acima;
  • 60n, 120n, 180n, deslocando os pontos que aparecem, podemos verificar a simetria de rotação de grau 6, assim como as de graus 3 e 2.
Como será óbvio, à semelhança de p3 em que 3 se refere a rotações de 120 graus ($3\times120^o=360^o$), a classificação deste padrão do plano pode ser



p6

20.9.11

Para além das simetrias de translação, rotações de 90 graus




No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m\vec{u}+n\vec{v}$ ($m,n \in \mathbb{Z}$), temos simetrias de rotação associadas a um ângulo de $90^o$ de amplitude. O motivo mínimo é

Clicando sobre os botões rotações e translações pode ver, respectivamente, um centro de rotação e ângulo, o vetor u e o vetor v, bem como o ponto (verde) para que possa verificar uma simetria de rotação.
Como será óbvio, à semelhança de p3 em que 3 se refere a rotações de 120 graus ($3\times120^o=360^o$), a classificação deste padrão do plano pode ser



p4

Para além das simetrias de translação, rotações de 120 graus




No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano em que, para além das simetrias de translação associadas aos vetores $m\vec{u}+n\vec{v}$ ($m,n \in \mathbb{Z}$), temos simetrias de rotação associadas a um ângulo de $120^o$ de amplitude. O motivo mínimo é


Clicando sobre os botões rotações e translações pode ver, respectivamente, um centro de rotação e ângulo, o vetor u e o vetor v, bem como o ponto (verde) para que possa verificar uma simetria de rotação.
Como será óbvio, à semelhança de p2 em que 2 se refere a meia volta ($2\times180^o=360^o$), a classificação deste padrão do plano pode ser


p3

14.9.11

Além das simetrias por translação, simetrias por reflexão




No padrão do plano (papel de parede) que se segue, temos uma ilustração do grupo de simetrias do plano que para além das simetrias de translação associadas aos vetores $m\vec{u}+n\vec{v}$ ($m,n \in \mathbb{Z}$) temos simetria de reflexão associada a um espelho(mirror)ou outros com a mesma direção. O motivo mínimo é


Clicando sobre os botões espelho, vetor u ou vetor v pode ver, respectivamente, um eixo de reflexão, o vetor u e o vetor v, bem como os pontos associados para que possa ver os efeitos das mudanças que efetuar sobre cada um deles. Pode mesmo ver o que acontece quando algum dos vetores se anula.

Como será óbvio, a classificação deste padrão do plano pode ser


pm

10.9.11

Além de translações do plano uma reflexão deslizante


Nesta entrada, ilustramos um padrão plano que, para além das translações associadas a dois vetores independentes, tem simetria de reflexão deslizante. No caso, a um vetor $\vec{u}$ associámos uma reflexão deslizante ($g$ de glide) e já sabemos que $g \circ g= g^2=t_{2u}$. A outro vetor $\vec{v}$ está associada a translação $t_{v}$. De resto, são simetrias deste grupo todas as translações associadas às combinações lineares $2m\vec{u}+n\vec{v}$, em que $m, n \in \mathbb{Z}$.

Clicando sobre o botão u pode ver o vetor $\vec{u}$ e, fazendo deslocar o ponto verde que aparece, confirmar a reflexão deslizante associada a $\vec{u}$ e a simetria de translação associada a $2\vec{u}$.
Clicando sobre o botão v, pode ver o vetor $\vec{v}$ e, deslocando o ponto azul que aparece, confirmar a simetria de translação associada a $\vec{v}$.

Das restantes simetrias de translação, mostramos dois exemplos de outros vetores que são combinações lineares de $2\vec{u}$ e $\vec{v}$.

pg


5.9.11

Além das translações, meias voltas




Na entrada anterior, o motivo mínimo era o raminho de carvalho e o papel de parede era gerado por duas translações associadas a vetores não paralelos. O grupo de simetrias ilustrado nesse papel de parede era um conjunto de translações munido da composição de transformações, a saber: $(\left\{t_{m.\vec{u}+n.\vec{v}} :m,n \in \mathbb{Z} \right\}, \circ)$.
A classificação p1, a ele referida, justifica~se por não haver simetrias de reflexão nem simetrias de rotação, para além da trivial rotação de $360^o$ - 1.

Nesta entrada, o motivo mínimo é um triângulo escaleno e é fácil ver que às combinações lineares de dois vetores acrescentamos meias voltas. Clicando no botão "vetores das translações", poderá ver os vetores das translações, sem modificar as suas direções e comprimentos. E não mais do que isso. A verificação das simetrias de translação funciona exactamente da mesma maneira que na entrada anterior.
Se clicar no botão "meia volta" pode mesmo rodar a figura de sombras e verificar que há simetrias de meias voltas. Se chamarmos $r$ à rotação de amplitude $180^o$, o grupo das simetrias ilustrado no papel de parede a seguir é constituido pelo conjunto das translações $\left\{t_{m.u+n.v} \circ r^k : m, n, k \in \mathbb{Z}\right\}$. E a classificação é (ou pode ser)

p2
p2

24.8.11

De um friso (p111) para um papel de parede (p1)

Tome-se o friso da entrada anterior. Por translações associadas a $\vec{u}\quad$ e $\vec{v}\quad$ (independentes) aplicadas à figura
(motivo mínimo, "primitive(?)")
,
obtém-se o padrão plano que se ilustra a seguir.
As translações associadas a $\vec{u}\quad$ e $\vec{v}\quad$ constituem simetrias da figura. Clicando sobre os diversos botões pode ver os vetores associados e os pontos que pode deslocar para verificar as simetrias de translação ($\vec{u}\quad$, $\vec{v}\quad$ e $\quad m.\vec{u}+n.\vec{v}\quad$ $m, n \in \mathbb{Z}$). Para além destas, não há quaisquer outras simetrias (não triviais, claro).

p1


19.8.11

Grupos de simetrias do plano: do particular para o geral



1. Rosáceas

Os chamados grupos de simetria de Leonardo (rosáceas) constituem-se como grupo de transformações do plano - finito, discreto, de rotações, reflexões e suas compostas - em que os eixos das reflexões passam pelo centro das rotações e, por isso, é um grupo de transformações em que há um ponto que é transformado em si mesmo. As amplitudes das rotações são sempre (em graus) quocientes das divisões (de resto $0$) de $360^o$ por um divisor inteiro.

2.Frisos

As ilustrações dos sete frisos, apresentadas em entradas anteriores, são o catálogo completo dos grupos de transformações (infinitos, discretos) do plano em que "se há uma simetria de translação segundo um vetor $\vec{u}$, todas as translações associadas a vetores $n\times\vec{u}, n\in\mathbb{Z}$ (e só essas de entre todas as translações do plano) são simetrias". (Claro que pode haver (ou não) outras simetrias para além das translações). Estes grupos de simetrias transformam pontos do plano em pontos do plano e de tal modo que as imagens dos pontos da figura original são outros pontos da figura, que se mantém, sem que qualquer ponto seja transformado em si mesmo. As rectas com a direcção dos vetores associados às translações são imagens de si próprias.


Esta construção ilustra (de novo!) os resultados acima referidos. Claro que se refere ao friso em que só há simetrias de translação associadas aos vetores $n\times\vec{u}, n\in \mathbb{Z}$, mas os resultados que, sobre ele, pode verificar, são os mesmos para qualquer friso (no que respeita às simetrias de translação presentes em todos os frisos). Clicando sobre o botão simetrias de translação, verá aparecer um ponto triangular que pode movimentar livremente sobre a direção de $\vec{u}$, podendo ver que a translação $t$ associada ao $\vec{u}$ é uma simetria, como o é $t^{-1}$ - translação associada ao vetor $-\vec{u}$ , $t\circ t=t^2$ - associada ao vetor $2\times \vec{u}$, etc

3. Completando o mural das simetrias do plano: Papel de parede

Há 17 modos adicionais de grupos de simetrias (infinitos e discretos) do plano. Tomando para ponto de partida os frisos em que há simetrias de translação associadas a vetores que dependem de um único vetor $\vec{u}$ ($n.\vec{u}$, com $n$ inteiro: discreto, numa direção), considerem-se agora dois vetores $\vec{u}$ e $\vec{v}$, independentes (não paralelos ou seguindo direções diferentes), e as combinações lineares $m\times \vec{u}+n \times\vec{v}$ com $m,n \in \mathbb{Z}$ e as translações a elas associadas como simetrias do plano. É claro que haverá outras simetrias. É óbvio que os frisos são um caso particular deste (basta pensar em $m=0 \wedge n\neq 0$ para termos o friso associado a $\vec{v}$ ou $n=0 \wedge m\neq 0$ e termos o friso associado a $\vec{u}$). Veremos que, de certo modo, entre eles se encontrarão as rosáceas, se não contássemos com as (enumeráveis, inumeráveis, numeráveis ;-) infinitas translações.

De um modo geral, chamamos padrões planos a todos estes grupos de simetrias do plano.

Vamos começar com a construção de um "wallpaper: papel de parede", a partir do friso ilustrado acima em que as únicas simetrias presentes serão mesmo translações (desprezando todas as simetrias triviais).

11.8.11

Notações para padrões de frisos.



As notações convencionadas para classificar cada padrão de friso consistem em quatro símbolos ordenados da esquerda para a direita.
  1. Na primeira posição há sempre um p a indicar que o padrão se repete de forma periódica numa direcção horizontal.
  2. Na segunda posição pode aparecer m ou 1: mirror (espelho), caso haja uma simetria de reflexão com eixo vertical; 1 em caso contrário.
  3. Na terceira posição pode aparecer m, a (de alternating) ou 1: m caso haja uma simetria de reflexão com eixo horizontal, a caso haja uma simetria de reflexão deslizante (mas não de reflexão horizontal) ou 1 em caso de não haver qualquer dessas simetrias.
  4. Na quarta posição pode aparecer 2 caso haja uma simetria rotacional (de meia volta) ou 1 em caso contrário.
Em qualquer das posições, 1 sgnifica que o padrão não tem a simetria correspondente à posição, sendo que
  • o primeiro símbolo p indica simetria de translação horizontal,
  • na segunda posição indica-se se há ou não há simetria de reflexão vertical,
  • na terceira posição indica-se se há ou não alguma simetria de reflexão (m ou a) associada a direção horizontal e
  • na quarta posição indica-se se há ou não simetria rotacional de meia volta.

A ilustração que se segue pretende ser o quadro que discrimina simetrias de cada um dos 7 padrões de frisos. A última linha, com as respectivas notações, fecha o quadro.



Dorothy V. Washburn and Donald W Crowe. Symmetries of Culture: Theory and Practice of Plane Pattern Analysis. University of Washington Press. Seatle: 1988


Toda esta entrada é uma adaptação livre de um texto do capítulo "Symmetry and Patterns. Garfunkel S.(dir.); Steen, L(coord.);Campbell P. (author) For all Practical Purposes - Introduction to Contemporary Mathematics. 3rd edition. COMAP. NY:1994". Com ela pretendemos esclarecer as notações que fomos colando a cada tipo de friso e ue aparecem em quase todas as publicações sobre o assunto. A este respeito, preferimos descrições (mesmo com abusos) do grupo de simetrias de cada friso.

9.8.11

Grupo de simetrias gerado por duas reflexões verticais e uma horizontal

Na construção dinâmica que se segue, clicando nos botões de navegação ao fundo, pode seguir a construção passo a passo de um friso gerado por reflexões s1 e s2 respectivamente relativas aos eixos e1 e e2 paralelos (verticais) e uma outra reflexão s3 relativamente a um eixo horizontal h. A partir de um objeto inicial -(d)- verá sucessivamente s1(d), s2(d), s1(s2(d)), (d)), s2(s1(d)), s1(s2(s1(d)), s2(s1(s2(d)), etc, e, em nova fila, as imagens da primeira fila, pela reflexão s3.




A classificação acima justifica-se por sabermos que há também uma simetria de meia volta (a composta de duas reflexões de eixos perpendiculares é uma meia volta), assim como há simetria de translação (a composta de duas reflexões de eixos paralelos é uma translação).

O grupo de simetrias associado a este friso é
{tn}n ∈ Ζ  ∪ {tn.v}n ∈ Ζ   ∪  {tn.h}n ∈ Ζ  ∪ {tn.v.h}n ∈ Ζ

em que t é uma translação, v uma reflexão de eixo vertical e h uma reflexão de eixo horizontal.

Seguem-se duas pequenas construções para que possa verificar os resultados referidos acima.






Fica óbvio que esse friso pode obter-se de várias maneiras. Pode realizar novas construções.

6.8.11

Grupo de simetrias gerado por reflexão deslizante e meia volta ou...


Temos vindo a apresentar diversos tipos de frisos que vamos classificando de acordo com as transformações usadas para os gerar - translações, rotações de meia volta, reflexões relativas um eixo e reflexões deslizantes (tomamos a horizontal como direcção de desenvolvimento do friso). Vamos indicando, para cada um, a classificação generalizadamente considerada, que se associa a cada tipo de friso e, no seu conjunto, esgotam os 7 tipos de frisos diferentes existentes. Alguns destes frisos podem ser obtidos, obviamente, de modos diferentes usando transformações diferentes. Temos vindo a indicar os grupos de simetria associados a cada friso.

O friso, cuja construção a seguir se ilustra, é gerado por uma reflexão deslizante - g - e uma meia volta - r - de centro no bem visivel rombo verde. O grupo das suas simetrias respectivo é {gn | n ∈ Ζ} ∪ {gn.r | n ∈ Ζ}, em que g0 é a transformação identidade.
Ao ver a construção passo a passo, a partir do g0(d)=d inicial, verá g1 (d), g-1(d), g2(d), g-2(d), etc e depois g1.r (d), g-1.r(d), g2.r(d), g-2.r(d), etc.






Este tipo de friso também pode ser gerado por uma reflexão deslizante - g - e uma reflexão vertical - v : {gn | n ∈ Ζ} ∪ {gn.v | n ∈ Ζ. Pode seguir a construção passo a passo do mesmo modo, agora por esta ordem: g0(d)=d, g1 (d), v.g1 (d), etc




pma2

Assim aparece classificado este tipo de friso nos quadros de
Dorothy Washburn and Donald Crowe. Symmetries of Culture:Theory and Practice of Plane Pattern Analysis. U.W. Pressg, Seatle:1988

3.8.11

Grupo de simetrias gerado por translação e reflexão vertical

Na abordagem de grupos de simetrias infinitos que são ilustrados por repetições periódicas de algum motivo numa direção (horizontal, por facilidade), temos apresentado diferentes ilustrações (ou composições), as transformações geométricas geradoras de cada grupo de simetrias e mesmo o conjunto dessas transformações. Antes do friso que ora apresentamos, as transformações geométricas mobilizadas foram translações, meias voltas, reflexões associadas a um eixo horizontal e reflexões deslizantes associadas a um eixo e vetor com a mesma direção horizontal. Apresentamos agora um friso que corresponde a um grupo de simetrias gerado por uma translação t associada a um vetor u (horizontal) e uma reflexão v relativamente a um espelho (v) de direção (vertical) perpendicular à do vetor associado à translação.
Pode acompanhar-se, por uso de botões de navegação, a criação da composição a partir de um d(=t0(d)), t1(d), t-1(d), t2(d), t-2(d), etc e depois um primeiro b(=v(d)=v(t0 (d))), v(t1 (d)), etc.

O grupo das simetrias ilustrado neste friso é pois {tn | n∈Ζ} ∪ {tn.v | n ∈Ζ}.



pm11

2.8.11

Grupo de simetrias gerado por reflexão deslizante e meia volta ou...

Temos vindo a apresentar diversos tipos de frisos que vamos classificando de acordo com as transformações usadas para os gerar - translações, rotações de meia volta, reflexões relativas um eixo e reflexões deslizantes (tomamos a horizontal como direcção de desenvolvimento do friso). Vamos indicando, para cada um, a classificação generalizadamente considerada, que se associa a cada tipo de friso e, no seu conjunto, esgotam os 7 tipos de frisos diferentes existentes. Alguns destes frisos podem ser obtidos, obviamente, de modos diferentes usando transformações diferentes. Temos vindo a indicar os grupos de simetria associados a cada friso.

O friso, cuja construção a seguir se ilustra, é gerado por uma reflexão deslizante - g - e uma meia volta - r - de centro no bem visivel rombo verde. O grupo das suas simetrias respectivo é {gn | n ∈ Ζ} ∪ {gn.r | n ∈ Ζ}, em que g0 é a transformação identidade.
Ao ver a construção passo a passo, a partir do g0(d)=d inicial, verá g1 (d), g-1(d), g2(d), g-2(d), etc e depois g1.r (d), g-1.r(d), g2.r(d), g-2.r(d), etc.






Este tipo de friso também pode ser gerado por uma reflexão deslizante - g - e uma reflexão vertical - v : {gn | n ∈ Ζ} ∪ {gn.v | n ∈ Ζ. Pode seguir a construção passo a passo do mesmo modo, agora por esta ordem: g0(d)=d, g1 (d), v.g1 (d), etc



pma1, fora dos quadros classificativos de
Dorothy Washburn and Donald Crowe. Symmetries of Culture:Theory and Practice of Plane Pattern Analysis. U.W. Press, Seatle:1988


21.7.11

Grupo de simetrias gerado por uma reflexão deslizante

Na construção que apresentamos a seguir, o friso de duas filas de RRR(erres) corresponde a um grupo de simetrias gerado por uma reflexão deslizante g, associada ao eixo de reflexão a e ao vector v. Clicando no botão 'reflexão deslizante' pode ver o espelho (a) e o vetor (v) a ela associados. Clique depois em 'deslocar para ver a simetria' (por translação e ver a composição que a simetria reflexão deslizante é neste friso) e faça deslizar o ponto verde, que aparece destacado, segundo u=2v. Lembramos que g.g=tu.

O ponto negro que sempre esteve visível permite modificar a "figura friso" mantendo o mesmo grupo de simetrias



p1a1, a de alternate

O conjunto de simetrias deste friso é {gn | n ∈ Ζ} em que g representa a reflexão deslizante.

Notas: Sobre a reflexão deslizante, aconselhamos a leitura das entradas, de 2009, neste blog, sobre os deslocamentos rígidos do plano. Particularmente:
sobre a reflexão deslizante e as compostas de translações com reflexões, de um modo geral;
sobre as compostas de reflexões com translações equivalentes a compostas de translações com reflexões.

Grupo de simetrias gerado por reflexão horizontal e translação

Na construção se se segue partimos de um friso de RRRR (erres) com simetria de translação (correspondente ao primeiro grupo infinito de simetrias aqui apresentado). Clicando sobre o botão 'reflexão' obtém-se, por reflexão um novo friso correspondente a um grupo de simetrias gerado por uma translação t associada a um vector u e uma reflexão h de eixo a (com a mesma direção de u). O conjunto de simetrias deste friso é {tn}n∈Ζ ∪ {h.tn} n∈Ζ. Designamos esta reflexão por h, por a tomarmos horizontal nas representações.
O botão "deslocar para ver" serve para ver as simetrias por translação no friso p111 de que se parte e o friso p1m1 a que se chega.


Finalmente ainda nos interessa mostrar como se passa deste friso para o outro p1a1 que é objecto da próxima entrada. Para isso, basta clicar no botão alternar. Claro que, depois de clicar em 'alternar', pode deslocar o ponto a preto bem como o ponto verde, observando o que acontece.



3.7.11

Um grupo de simetria gerado por uma meia volta e uma translação

Partimos de um elemento figurativo que, por uma translação associada a vetores u e -u, decora uma fita com infinitas pequenas figuras todas iguais (seguindo uma mesma direção e um mesmo sentido) tal como se mostrou na primeira ilustração de friso. Neste novo friso, acontece que a cada uma das figuras corresponde uma outra obtida por rotação r de 180 graus (meia volta) em torno de um ponto sobre uma recta com a direção de u. É óbvio que assim o conjunto das duas filas horizontais de figuras pode ser obtido por translação a partir de um par de figuras de que um dos seus elementos se obtém por meia volta sobre o outro. Note-se que, qualquer centro da meia volta é transformado noutro pela translação e, em consequência, em relação a cada centro, uma figura elementar do friso superior tem por imagem a figura do friso inferior equidistante desse centro.
Para ver o vetor u da translação associada, clique no botão 'translação' e para verificar a simetria de translação, desloque o ponto que aparece de novo, na origem do vetor. Para não complicar a figura, volte ao princípio (botão automático da construção, em cima à direita) e, clicando no botão 'meia volta?', desloque o ponto verde no sentido contrário ao dos ponteiros do relógio para ver a simetria por meia volta. Para além das simetrias de translação, pode acontecer a simetria de meia volta num friso.... O conjunto das simetrias deste friso é, portanto, {tn|n∈Ζ}∪{tn.r|n∈Ζ}




Se quiser ver os conjuntos de pontos que são centros das várias meias voltas, clique no botão 'listas'.



Na anterior entrada (primeira de friso), o grupo de simetria é gerado por uma só translação. A transformação geométrica translação é elemento comum a todos estes grupos de simetrias - frisos- em que há rectas paralelas ao vector associado à translação pela qual são imagens de si próprias, sem que qualquer ponto se mantenha invariante. Nesta entrada, consideramos as rotações de 180 graus (e obviamente de 360 graus e outros múltiplos de 180). Num friso, não podemos considerar rotações de amplitudes diferentes daquelas. Mas podemos considerar reflexões em eixos horizontais (paralelos ao vector da translação) e relativamente a eixos verticais (perpendiculares à direcção das repetições). A composta ou produto de reflexões de eixos paralelos é uma translação - um objecto colocado entre dois espelhos paralelos cria uma vista de friso de imagens todas iguais a esse objecto. Lembramos que o produto de duas reflexões de eixos concorrentes é uma rotação....



Nas classificações de frisos, para além da letra p (inicial, de periódico) que aparece nas classificações de todos os frisos, pode aparecer em segunda posição m (mirror: espelho) se houver reflexão vertical (ou 1, nessa posição se não houver reflexão vertical); m em 3ª posição se houver reflexão horizontal ou a (de alternate) se houver reflexão deslizante (ou 1, em caso de não haver), 2 em 4ª posição caso haja meia volta (ou 1, caso não haja meia volta).

De acordo com estas notações, o primeiro friso (da entrada anterior) é p111, e o desta entrada é p112.

28.6.11

Um grupo de simetria gerado por uma só translação associada a um vetor

Do mesmo modo que apresentámos uma rosácea com repetições segundo direções diferentes em torno de um ponto e igualmente espaçadas de uma amplitude angular, na construção seguinte apresentamos uma figura onde podemos observar um padrão de repetições segundo uma determinada direção. Um determinado vetor dá-nos a direção das repetições e o espaçamento (em comprimento) entre as repetições.
Clique sobre o botão 'vector' para ver o vetor u associado à translação t geradora do grupo de simetrias da figura. Pode clicar sobre o botão 'deslocar para ver' que lhe permite verificar que o grupo de simetrias é constituído por um número infinito de isometrias (no caso, translações) todas diferentes, a saber t, t.t=t2, t3, .... e a inversa de t, associada ao vector -u com comprimento e direção de u no sentido contrário, t-1 bem como produtos t-2, t-3, t-4... Observe-se que t2.t2 =t4, t-1.t-2=t-3 ou t5.t-1= t4,




Nas classificações de frisos, usamos p para indicar a periódica repetição segundo uma só direção.
O conjunto de simetrias deste friso é {tn|n∈Ζ}, que frequentemente aparece classificado como p111

Grupos de simetria: dos finitos aos infinitos

Abordámos antes as rosáceas ou grupos de simetria de Leonardo: com um número finito de elementos ou isometrias: reflexões, rotações e suas compostas (ou produtos). Temos claro que duas isometrias do plano são a mesma quando cada ponto do plano tem a mesma imagem para as duas isometrias. Por exemplo, a imagem de um ponto A do plano por uma rotação de centro O e amplitude 45 graus é a mesma que se obtém aplicando uma rotação de centro O e amplitude -315 graus ou a mesma para uma rotação de 360+45, 720+45, ... graus.

Podemos imaginar que as rosáceas têm motivos repetidos indefinidamente, embora sejam finitas as realizações naturais que conhecemos. As isometrias que transformam uma figura (ilustrativa de uma rosácea) nela mesma são em número infinito? São claro. Eu posso aplicar uma rotação de um número indeterminado de voltas (um número infinito de vezes?) a uma figura, obtendo sempre como imagem a figura de que parto. Mas o grupo de simetrias de qualquer rosácea é finito. Por exemplo o grupo cíclico de ordem 3 (da primeira rosácea apresentada) é gerado por uma rotação g de amplitude 120 graus. O produto ou composição g.g ou g2 da rotação de 120 graus de centro dado é uma isometria diferente de g já que a imagem A' de um ponto A qualquer do plano por uma rotação de 120 graus não é a mesma que se obtém por uma rotação g.g ( que roda a imagem A' de A por g de 120 graus, obtendo A''≠A'): aplicar g.g a A corresponde a uma rotação de 240 graus. Do mesmo modo, g3≠g2≠g. Mas sabemos que g3 é a identidade que a qualquer ponto A faz corresponder A e sabemos que g4=g, etc. Como sabemos que g3 é a identidade e que g2 neutraliza a acção de g, já que g.g2=g2.g=g3= Id., o grupo cíclico C3 é constituído por {Id, g, g2}. Os grupos cíclicos Cn têm n elementos (isometrias diferentes) e os grupos diedrais Dn que jogam com uma reflexão s e uma rotação têm 2n elementos (isometrias diferentes).

No caso das rosáceas, há um ponto invariante. Mas as direcções em que se dispõem os motivos que se repetem varia. Vamos abordar, em seguida, os casos dos grupos de simetria dos frisos que nos dão a ver repetições (periódicas - igualmente espaçadas) de algum motivo segundo uma dada direcção. Estes grupos de simetria têm uma infinidade de repetições do motivo, têm uma infinidade de isometrias diferentes, obrigatoriamente têm translações associadas a vectores com a direção em que as repetições acontecem. Estas translações (vetor não nulo) transformam cada ponto de uma reta com a tal direção do friso, num outro ponto da mesma reta. A imagem de tal figura reta é ela mesma, portanto, sem que qualquer ponto se mantenha invariante pela translação.