Nesta entrada, ilustramos um padrão plano que, para além das translações associadas a dois vetores independentes, tem simetria de reflexão deslizante. No caso, a um vetor $\vec{u}$ associámos uma reflexão deslizante ($g$ de glide) e já sabemos que $g \circ g= g^2=t_{2u}$. A outro vetor $\vec{v}$ está associada a translação $t_{v}$. De resto, são simetrias deste grupo todas as translações associadas às combinações lineares $2m\vec{u}+n\vec{v}$, em que $m, n \in \mathbb{Z}$.
Clicando sobre o botão u pode ver o vetor $\vec{u}$ e, fazendo deslocar o ponto verde que aparece, confirmar a reflexão deslizante associada a $\vec{u}$ e a simetria de translação associada a $2\vec{u}$.
Clicando sobre o botão v, pode ver o vetor $\vec{v}$ e, deslocando o ponto azul que aparece, confirmar a simetria de translação associada a $\vec{v}$.
Das restantes simetrias de translação, mostramos dois exemplos de outros vetores que são combinações lineares de $2\vec{u}$ e $\vec{v}$.
pg
Sem comentários:
Enviar um comentário