A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

31.8.07

Problema de Monge

As questões que foram sendo colocadas até agora permitem resolver o Problema de Monge:
Dados três círculos, determinar um quarto círculo que os corte ortogonalmente (caso exista)



O matemático francês Monge (1746-1818) é conhecido como fundador da geometria descritiva. Para os efeitos da resolução do exercício interactivo que se apresenta acima, para ser resolvido sem alvo à vista, interessa referir que Monge viu que os 3 eixos radicais dos 3 pares de cirunferências se interesectam num ponto. Será que o problema de Monge tem solução para qualquer terno de cirucnferências?



Estamos a realizar estas construções e exercícios com CAR.Metal interface de Eric Hakenholz para o magnífico Régua e Compasso (Zirkel und Lineal) de René Grothmann que sempre utilizámos neste último ano. CAR.Metal v. 1.8 já conta com uma adaptação portuguesa que pode e deve ser melhorada, como é óbvio.

27.8.07

Um exercício sem alvo

O exercício que estamos a propor é uma experiência. Sendo um exercício feito em "R(égua) e C(ompasso) - (ZuL)" estamos a experimentar o interface CAR.metal e a apresentar o exercício sem alvo visível. Esperando, claro está, que o computaddor reconheça a solução, caso a encontre.
Aqui vai:
Dadas duas circunferências de centros O1 e O2 e a tangente t comum às duas, determine um círculo ortogonal às duas circunferências e que tenha centro sobre t.




Depois de pensar nas propriedades da tangente comum às duas circunferências, como passaria a determinar o eixo radical de duas circunferências?

Pode movimentar os centros das circunferências e fazer variar os raios. Isso ajudará a ver o que se passa quando as circunferências se intersectam, são tangentes, etc...

22.8.07

um lugar geométrico - o eixo radical(?)

Dadas duas circunferências, onde se encontram os centros das circunferências ortogonais às duas? Sabemos que a potência da circunferência (ortogonal às duas) no centro de uma delas é igual à potência no centro da outra. Como encontrar circunferências ortogonais a duas circunferências dadas?




A recta vermelha (PR) é o lugar geométrico dos pontos nos quais os dois círculos verde e azul (centros O1 e O2) têm a mesma potência. Designamos essa recta por eixo radical ("chordal" "power line"?) dos dois círculos. PR é perpendicular à recta O1O2. Conhecido este lugar geométrico, fácil é determinar círculos ortogonais (a preto na figura) aos dois círculos verde e azul.

No caso da nossa construção, os círculos verde e azul não se intersectam. Como determinar o eixo radical de duas circunferências que se intersectam?

20.8.07

Ortogonalidade, potência, pólo e polar

Conversa puxa conversa, passámos da inversão para a perpendicularidade de duas cirunferências. E, no mesmo passo, ligámos a ortogonalidade de duas circunferências à potência de uma circunferência num ponto:



A construção ilustra bem que a potência da circunferência verde (de centro O e raio |OA|ou |OT|) no centro da circunferência azul (de centro P e raio |PT|)
|OP|2 - |OA|2

é o quadrado do raio da circunferência azul |PT|2.

E é claro que, por serem ortogonais as circunferências, ao pólo O relativamente à circunferência azul de centro P corresponde a mesma recta polar que ao pólo P relativamente à circunferência verde de centro O. Na condição de serem ortogonais as circunferências, a polar de P relativamente à circunferência verde é perpendicular a OP (à recta que passa pelos centros, eixo das abcissas) no ponto que é transformado de P pela inversão relativamente à circunferência verde (inverso de P quando tomamos para unidade o raio da circunferência verde ou com abcissa inversa de P se tomarmos para origem O e para unidade o raio verde)... Do mesmo modo, a polar de O.....

Não podemos saber se este tipo de ligações entre diversos assuntos (conceitos) pode ser abordado facilmente no ensino básico (ou mesmo no secundário), mas parece-nos óbvio que é do maior interesse que, sempre que possível, aos jovens estudantes, deve ser dado o cheiro da síntese, da unidade.... Aos professores cabe escolher as melhores oportunidades e não desperdiçar um único momento propício a reforçar o especial espírito do lugar que a matemática é....

19.8.07

Perpendicularidades e inversões


A construção acima (com a qual pode interagir) ilustra bem que,
  • se tomarmos para unidade o raio da circunferência verde (|OT|=1), |OA| -1=|OP|,
    ou, o que é o mesmo, A é o transformado de P pela inversão associada à circunferência verde;

  • se tomarmos para unidade o raio da circunferência azul (|PT|=1). |PA| -1 =|OP|,
    ou, o que é o mesmo, A é o transformado de O pela inversão associada à circunferência azul.

As rectas OT e PT são perpendiculares (OT é tangente à circunferência azul e PT é tangente à circunferência verde em T). Do mesmo modo, OS e PS são perpendiculares.

Dizemos que duas circunferências se intersectam perpendicularmente quando os raios tirados para um ponto de intersecção são perpendiculares, que é o mesmo que dizer quando eles são catetos de um triângulo rectângulo cuja hipotenusa é o segmento que une os seus centros.
Designando por r1 e r2 os raios das circunferências, (|OT|= r1 e |PT|=r2), r12 + r22 = |OP| 2
r12 = |OP| 2 - r22
r22 = |OP| 2 - r12


E isto é para ser lido: duas circunferências são ortogonais (perpendiculares), quando a potência de qualquer delas no centro da outra é o quadrado do raio da outra.

12.8.07

a inversão do triângulo inscrito



o quadrado circunscrito invertido




pensava eu que os azulejos eram obra da inspiração de cada homem
antes de descobrir que a matemática faz da inspiração de cada homem
a inspiração do homem

Etiquetas:

10.8.07

semi-rectas inversamente paralelas



inversas de paralelas inversas são...

a inversa da concêntrica verde

Considere a circunferência c, preta na figura, e a inversão a ela associada. Determine a transformada por essa inversão da cirucunferência verde, v.

Etiquetas: , ,

Inverter é ver ao espelho. O quê,?

Tomámos uma circunferência de centro em O e raio r. Os inversos dos pontos de uma recta exterior a essa circunferência (inversora, assim lhe chamamos para simplificar) estão todos sobre uma circunferência que passa pelo centro da circunferência inversora. Falávamos de inverso mesmo no sentido do que neutralizaria um número pela multiplicação: a cada P da recta r, associamos o número p = |OP|/r e ao transformado P' de P fica associado um número p' =|OP'|/r=r/|OP|=p-1. Claro que o ponto O a que corresponde |OO|=0 não é inverso de qualquer ponto (ou é inverso do ponto impróprio da recta - no infinito) e não tem inverso na inversão associada à circunferência de centro O (ou é inverso de qualquer ponto impróprio de qualquer recta).
[A inversa de uma recta é uma circunferência com menos um ponto (ou com um buraco). A imagem por inversão associada a uma cirunferência de uma recta acabada (incluindo os pontos impróprios onde ela começa e acaba, no infinito) é uma circunferência.]
Interessante é agora procurar inverter figuras geométricas ou ver as suas imagens num espelho circular. Qual é a imagem de uma recta secante à circunferência inversora? Qual é a imagem de uma cirunferência que não seja concêntrica com a crcunferência inversora de centro O e não passe por O? Qual é a imagem da própria circunferência inversora? Qual é a imagem de uma circunferência concêntrica com outra tomando para espelho uma delas? Qual é a imagem de um segmento de recta? E de um triângulo?
Tantas perguntas? Algumas delas. Cada pessoa pode fazer outras tantas e ver como as respostas fazem quadros surpreendentes e belos. Com que cores queremos pintar o nosso mundo do outro lado do espelho?

Etiquetas: , , , , ,

9.8.07

Determinar o inverso de A.

Considere a inversão associada à circunferência e determine o transformado de A por essa inversão.

Etiquetas: , ,

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção