Mostrar mensagens com a etiqueta 2022 Recuperação de 27.08.2007 que foi publicada em 31.08.2007. Mariana Sacchetti. Problema de Monge. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta 2022 Recuperação de 27.08.2007 que foi publicada em 31.08.2007. Mariana Sacchetti. Problema de Monge. Mostrar todas as mensagens

31.8.07

Problema de Monge

Dados três círculos, determinar um quarto círculo que os corte ortogonalmente (caso exista)

O matemático francês Monge (1746-1818) é conhecido como fundador da geometria descritiva. Para os efeitos da resolução do exercício interactivo que se apresenta acima, para ser resolvido sem alvo à vista, interessa referir que Monge viu que os 3 eixos radicais dos 3 pares de cirunferências se interesectam num ponto. Será que o problema de Monge tem solução para qualquer terno de circunferências?
Estamos a realizar estas construções e exercícios com CAR.Metal interface de Eric Hakenholz para o magnífico Régua e Compasso (Zirkel und Lineal) de René Grothmann que sempre utilizámos neste último ano. CAR.Metal v. 1.8 já conta com uma adaptação portuguesa que pode e deve ser melhorada, como é óbvio.
Com data de 27 de Agosto de 2007 escrevia-se "Um serviço sem alvo":
O exercício que estamos a propor é uma experiência. Sendo um exercício feito em R(égua) e C(ompasso) -(ZuL)" estamos a experimentar o interface CAR.metal e a apresentar o exercício sem alvo vísivel. Esperando , claro está, que o computador reconheça a solução, caso a encontre. Aqui vai:
Dadas duas circunferências de centros $\;O_1\;$ e $\;O_2\;$ e. a tangente $\;t\;$ comum às duas, determine um círculo ortogonal às duas circunferências e que tenha centro sobre $\;t$.
A restauração em 2022:


Construção restaurada por Mariana Sacchetti que a explica a seguir:
1. Determina-se o eixo radical das duas circunferências (lugar geométrico dos centros das circunferências ortogonais à circunferência verde e azul):
Traça-se uma circunferência auxiliar (a tracejado preto e de centro M) que intersete ambas as circunferências. As retas definidas pelos pontos de interseção são os eixos radicais das circunferências verde e azul com a circunferência auxiliar. Pela interseção destas duas retas (ponto S) traçar a perpendicular à linha dos centros O1O2. Esta reta, vermelha, é o eixo radical das circunferências ortogonais à verde e à azul.
2. A circunferência pedida tem centro no ponto de interseção do eixo radical e da tangente t (ponto O) e passa pelos pontos I e L, pontos de tangência da reta t com as circunferências.

No livro ainda vinha escrito "Depois de pensar nas propriedades da tangente comum às duas cirucnferências, como passaria a determinar o eixo radical de duas circunferências?
Pode movimentar os centros das cirucnferências e fazer variar os raios. Isso ajudará a ver o que se passa quando as circunferências se intersectam, são tangentes, etc...
e já temos tudo para resolver o Problema de Monge:
Dados três círculos, determinar um quarto círculo que os corte ortogonalmente (caso exista)




Construção restaurada por Mariana Sacchetti que a explica a seguir:



1. Desenha-se uma circunferência auxiliar que intersete as três circunferências.
2. Constroem-se os eixos radicais (bastam dois. Sabemos que os três se intercetam no mesmo ponto)
3. O ponto de interseção dos eixos radicais é o centro da circunferência pretendida.
4. Pelo centro da circunferência pretendida tiram-se tangentes às circunferências (basta a uma e basta determinar um ponto de tangência).
5. A circunferência ortogonal às outras três tem centro no ponto de interseção dos eixos radicais e passa pelos pontos de tangência referidos no ponto anterior.