13.9.14

Círculo "misto" de um triângulo retângulo

circuncírculo, incirculo e círculo misto de um triângulo retângulo
Problema: Tomados 3 pontos que definem um triângulo [ABC] retângulo em C e um círculo (circuncírculo do triângulo), construa-se o círculo tangente interiormente aos dois catetos e ao circuncírculo.

Clicando nos botões de "mostra/esconde" à esquerda, poderá ver os diversos círculos, segmentos e pontos que podem ajudar a perceber a construção e as relações que se estabelecem.
  1. Dados A, B, C, a=BC, b=CA, c=AB tais que BCCA e, em consequência,
    a2+b2 = c2
  2. Clicando no botão "circuncírculo", aparece um círculo de centro O que passa pelos pontos A, B, C de raio R = OA = OB = OC. No triângulo retângulo O é o ponto médio da hipotenusa [AB] e, por isso, de comprimento c / 2. Como sabemos,
    (c / 2)2 = OA2 = OB2 = OC2 = ON2 + OM2 = (a / 2) 2 + (b / 2)2

    © geometrias, 12 de Setembro de 2014, Criado com GeoGebra



  3. Clicando no botão "mista/solução" ficamos com a figura correspondente ao problema já resolvido. Temos o círculo (O, R)= (O, c / 2) e o círculo (O1, r1) tangente a BC, CA, (O, R). Analisar o problema de construção resolvido, esclarece como o resolvemos de facto.
    • Como (O_1, r1) é tangente interiormente a (O, R) = (O, c/2 ),
      OP=R=c / 2 = OO1+ r1 e, em consequência, OO1 = c / 2 - r1
    • O triângulo OO1Z é retângulo em Z, e OO1 2 = O1Z2 + ZO2.
      Ora O1Z = O1V-ON = r1-a / 2 e OZ = OM - MZ = b / 2 - r1
    • Finalmente,
      ( c / 2 - r1)2 =( r1 - a /2)2 + (b / 2 - r1)2
      ( c / 2)2 +(r1 )2 - c.r1 = ( r1)2+ (a / 2)2 -r1.a + ( b / 2)2 +( r1)2 -b.r1
      c2+4.r1 2 -4cr1 = 4r12+a2-4ar1 +b^2+4r12 -4br1
      E, como c2 = a2 + b2, podemos simplificar, obtendo
      -4cr1 =-4ar1-4br1+4r1^2 ou finalmente r1= a+b-c.
    Esta análise feita sobre a figura do problema resolvido permite-nos construir a circunferência mista/solução. Como esta circunferência é tangente a CA e a BC,, o seu centro O1 está à distância r1= a+b-c de cada um dos catetos, é a interseção da perpendicular a CA tirada por um ponto V tal que VC =a+b-c com a perpendicular a BC tirada pelo ponto W tal que WC=a+b-c.
  4. Clique agora no botão "incirculo", para ver o círculo tangente interiormente aos três lados do triângulo. Pode esconder as construções anteriores clicando no botão da direita alta para reiniciar ou usando os botões ocultar "circuncírculo" e "mista/ solução" caso estejam vísiveis. Como sabemos o centro do incírculo é equidistante dos três lados do triângulo, ou seja é o ponto de interseção das três bissetrizes.
  5. Calculemos, em função de a, b, c dados, o comprimento do inraio r = IJ=IK=IL:
    • AC pode ser visto como a tangente a (I, r) tirada pelo ponto A ou tirada por C. Do mesmo modo, AB é tangente ao incírculo tirada por A ou por B. E BC é tangente ao incírculo tirada por B ou por C
      Como os segmentos das duas tangentes tiradas por um ponto são iguais, temos AJ=AL, BK=BL, CJ=CK.
      Por outro lado, temos AL+LB =AB=c, BK+KC=BC=a, CJ+JA=CA=b e AL+LB +BK+KC+CJ+JA= a+b+c. Mais simplesmente 2BK+2CJ+2AL = a+b+c . Designando por 2p o perímetro a+b+c do triângulo, BK+CJ+AL=p, sendo p o semiperímetro do triângulo. E, como CJ+AL = b, BK = BL= p-b. Do mesmo modo, como BK+CJ=BC=a, AL= AJ =p-a. E como BK+AL= BL+AL= c,\ CJ=CK= p-c.
    • Claro que, neste caso do triângulo retângulo em C,
      r= CJ=CK = p-c = (a+b+c)2 - c = (a+b-c)2
  6. Vimos assim que, para qualquer triângulo retângulo, se verifica a seguinte relação: o raio - r1 - da circunferência tangente aos dois catetos e ao circuncírculo do triângulo é o dobro do raio - r - do incírculo, circunferência tangente aos 3 lados do triângulo

Problema de construção, a partir de A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.

8.9.14

Construção das circunferências do anjo com um pão


Problema: Dados um quadrado $\;[ABCD]\;$ de lado $\;a\;$, arcos $\;(A, BD), \;(B, AC)\;$ e o semicírculo de diâmetro $\;CD\;$, determinar os centros e raios de dois círculos, um tangente aos três arcos e outro tangente a $\;CD\;$ e aos dois arcos $\;(A, BD), \;(B, AC)\;$
Para determinar os dois círculos, bastará determinar os raios dos círculos. Os seus centros estarão forçosamente no eixo de simetria da figura, isto é sobre a reta que liga os pontos médios $\;E\;$ de $\;CD\;$ e $\;F\;$ de $\;AB.\;$
Chamemos $\;O_1\;$ e $\;r_1\;$ aos centro e raio da maior circunferência (o pão?) e $\;O_2\;$ e $\;r_2\;$ aos centro e raio da circunferência menor (a cabeça do anjo?)
Clicando o botão no centro ao fundo verá os segmentos de reta auxiliares.
Toma-se o segmento de reta $\;EF\;$ que conterá $\;O_1, \;O_2\;$ e analisa-se o problema supondo que já está resolvido.

© geometrias, 7 de Setembro de 2014, Criado com GeoGebra


  1. $\;(O_1, r_1)?\;$ Esta circunferência é tangente internamente às circunferências
    • $\;(E, \; \displaystyle \frac{a}{2})\;$ e, por isso,
      • passa por $\;G,\;$ sua interseção com $\;EF\;$
      • $\;FO_1\; = FG+GO_1 = \displaystyle \frac{a}{2} + r_1$
    • $\;(A,\; a)\;$ e, por isso, $\;AO_1 = a-r_1, \;$, pois a distância entre centros de duas circunferências tangentes interiormente é igual ao valor absoluto da diferença dos seus raios
    • $\;(B,\; a)\;$ e, por isso, $\;BO_1 = a-r_1:\;$ ($\;AO_1=BO-1 =a-r_1\;)$
    Considerando o triângulo $\;[AFO_1],\;$ retângulo em $\;F\;$, cujos catetos são $\;AF = \displaystyle \frac{a}{2}\;$ e $\;FO_1= \displaystyle \frac{a}{2} + r_1, \;$ e cuja hipotenusa é $\;AO_1=a-r_1\;$, o teorema de Pitágoras estabelece $$\left( \frac{a}{2}\right)^2 + \left(\frac{a}{2} + r_1\right)^2 = \left(a-r_1\right)^2$$ que dá o valor de $\;r_1\,$ em função do lado $\;a\;$ do quadrado: $$r_1 = \frac{a}{6}$$
  2. $\;(O_2, r_2)?\;$ Esta circunferência é tangente a $\;CD\;$ no ponto $\;E\;$ e exteriormente às circunferências $\;(A, \; a)\;$ e $\;(B, \; a)\;$. As circunferências tangentes exteriormente têm centros distanciados um do outro $\;AO_2 =a+r_2.\;$.
    O Teorema de Pitágoras aplicado ao triângulo $\;[AFO_2]\;$, retângulo em $\;F\;$ cujos catetos são $\;AFO_2 = \displaystyle \frac{a}{2}\;$ e $\;FO_2=a-r_2\;$ e cuja hipotenusa é $\;AO_2 = a+r_2\;$ garante que $$\left(\frac{a}{2}\right)^2 + \left(a-r_2\right)^2 = \left( a+r_2\right)^2$$ que dá para $\;r_2\;$ um valor em função do lado $\;a\;$ do quadrado $$r_2 = \frac{a}{16}$$

Assim, a construção das circunferências fica feita se tomarmos o segmento $\;EF\;$ de comprimento $\;a\;$ e sobre ele tomarmos
  • $\;O_1\;$ tal que $\;GO_1 =\displaystyle \frac{a}{6} =r_1\;$ - $\;(O_1, r_1)\;$ passa pelo ponto de interseção da semicircunferência de diâmetro $\;CD\;$ da figura
  • $\;O_2\;$ tal que $\;EO_2 = \displaystyle\frac{a}{16} =r_2\;$ - $\;(O_2, r_2)\;$ passa por $\;E\;$

sugerido em vários apontamentos feitos sobre "sangakus", asssim apresentadas em pt.wikipedia: tábuas comemorativas, em madeira, oferecidas a pequenos santuários japoneses, como forma de agradecer aos deuses, provavelmente, a resolução de um problema matemático...