27.3.14

Usando lugares geométricos para resolver problemas de construção(14)

Problema: Determinar uma tangente a uma dada circunferência cortada por uma reta dada a uma dada distância do ponto de tangência.

Na construção a seguir, apresentamos os passos da resolução do problema de construção.

Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.

  1. Dados (a azul): uma reta $\;a\;$, um segmento $\;d\;$, uma circunferência de centro $\;O\;$ e raio $\;r\;$

    Resolver este problema resume-se a determinar um ponto $\;P\;$ da reta $\;a\;$ de que se tire uma tangente $\;t\;$ a $\;(O, r)\;$ sendo $\;PT = d\;$, em que T é o seu ponto de tangência.
  2. Um ponto $\;P\;$ de $\;a\;$ que satisfaz as condições requeridas é vértice de um triângulo $\;PTO\;$ retângulo em $\;T\;$ em que os catetos são $\;PT=d\;$ e $\;TO = r\;$ conhecidos e a hipotenusa é $\;OP\;$
    Para determinar $\;OP =h\;$ basta tomar o triângulo retângulo de catetos $\;r, \; d\;$.

    © geometrias, 27 de Março de 2014, Criado com GeoGebra


  3. E o ponto $\;P\;$, se existir fica determinado pela interseção de $\;a\;$ com a circunferência $\;(O, h)\;$, No caso da nossa figura ficam determinados dois pontos $\;P.\;Q\;$ : $\;PO = QO = h$, sendo $\;h^2=r^2+d^2\;$
  4. Os pontos $\;T\;$ de tangência encontarm-se na interseção de $\;(O, r)\;$ com a circunferência de diâmetro $\;OP=h\;$ (caso particular do 5º ou do 9º lugar geométrico da lista). Na nossa figura, para o ponto $\;P\;$ há duas tangentes $\;t_1\;$ e $\;t_2\;$, para as quais $\;PT_1 = PT_2 = d\;$, como queríamos.
  5. Outras soluções, no nosso caso, são as tangentes a $\;(O, \;r)\;$ tiradas por $\;Q\;$

Podemos variar os comprimentos $\;d\;$ $\;r\;$ e as posições relativas das circunferência e reta dados. Verificamos que a existência de soluções depende da relação entre o comprimento de $\;d\;$ e as posições relativas de $\;a\;$ e $ \;(O,r)\;$

21.3.14

Usando lugares geométricos para resolver problemas de construção (13)

Problema: Determinar uma circunferência tangente a uma dada reta num ponto dado e a uma circunferência dada.

Na construção a seguir, apresentamos os passos da resolução do problema de construção.

Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.

  1. Dados (a azul): uma reta $\;a\;$ e um seu ponto $\;P\;$, uma circunferência de centro $\;C\;$

    Para resolver este problema, basta determinar um ponto $\;O\;$ para centro da circunferência nas condições definidas.
  2. Para ser tangente a $\;a\;$ no ponto $\;P\;$, o centro $O$ da circunferência requerida na perpendicular a $\;a\;$ tirada por $\;P\;$ - $\;\perp_P^a$.

    © geometrias, 21 de Março de 2014, Criado com GeoGebra


  3. Por outro lado, para ser tangente à circunferência de centro $\;C\;$ o centro $\;O\;$ da circunferência requerida será tal que $\;OC\;$ é igual à soma dos raios (da circunferência requerida e da circunferência dada).
    Se tormarmos a reta $\;e\;$ do lugar geométrico dos pontos à distância de $\;a\;$ igual ao raio da circunferência dada (2º lugar geométrico da lista), $\;CEO\;$ é um triângulo isósceles. $\;E\;$ é $\;e.\perp_P^a$
  4. $\; O_1\;$ é a interseção da perpendicular $\;PE\;$ com a mediatriz de $\;CE\;$ (3º lugar geométrico da lista - dos pontos equidistantes de $\;C\;$ e $\;E\;$)
    A circunferência de centro em $\;O_1\;$ a passar por $\;P\;$ satisfaz o requerido.
  5. Do mesmo modo, considerando $\;f\;$ e $\;\{F\}\; = \;f.\perp_P^a$ $\;O_1, \;O_2\;$, a mediatriz de $\;FC\;$ interseta a $\;\perp_P^a$ num ponto $\;O_2\;$. Este é o centro da segunda circunferência a passar por $\;P\;$ que satisfaz as condições do problema.

Podemos variar os comprimentos e as posições relativas da circunferência, ponto e reta dados.