31.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (2)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos à mesma distância de uma dada reta $\;r.\;$
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 31 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Se $\;A,\;B\;$ estão à mesma distância de $\;r, \;$ $\;AB \parallel r.\;$ O centro da circunferência que passa por $\;A,\;B\;$ é um ponto da mediatriz de $\;AB \;$ que intersecta $\;r\;$ em $\;D.\;$ Como a mediatriz de $\;AB\;$ é perpendicular a $\;AB\;$ também é perpendicular à sua paralela $\;r.\;$ Por isso o ponto $\;D\;$ é o ponto de tangência da circunferência que passa por $\;A, \;B\;$ e é tangente a $\;r.\;$ Assim o centro da circunferência que procuramos é o ponto comum a $\;CD\;$ e a mediatriz de $\;AD\;$ ou de $\;BD\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

30.1.16

Construir uma circunferência tangente a uma reta e passe por dois pontos (1)


Problema:
São dados dois pontos $\;A,\;B\;$ ambos sobre uma perpendicular a uma reta $\;r\;$ dada e num dos semi-planos determinados por ela.
Construir uma circunferência que passe pelos pontos $\;A, \;B\;$ e é tangente a $\;r. \;$

©geometrias. 30 janeiro 2016, Criado com GeoGebra

Pode seguir a construção da solução do problema, fazendo variar os valores de n no seletor apresentado à direita baixa do retângulo de visualização



Por serem dados dois pontos da circunferência que se procura, bastará determinar um terceiro ponto da circunferência ou o seu centro $\;F\;$ que é um ponto equidistante dos pontos $\;A\;$ e $\;B\;$ — $( FA = FB )$ — da mediatriz de $\;[AB].$ Para que a circunferência seja tangente a $\;r\;$ é preciso que o seu raio seja igual à distância de $\;F\;$ a $\;r,\;$ ou, o que é o mesmo, que seja igual à distância de $\;r\;$ à mediatriz de $\;[AB]\;$. Esta distância é $\;CD\;$ em que $\;C\;$ é $\;AB.r\;$ e $\;D\;$ é o ponto médio de $\;[AB]\;$. O centro da circunferência é determinado como $\; (A, CD). (B, CD),\;$ por exemplo. Há dois pontos $\;E, \;F\;$ que verificam essas condições. As soluções do problemas serão $\;(E, EA)\;$ e $\;(F, FB) \;$, simétricas relativamente ao espelho $\;AB.\;$

151. On donne une droite D et d'un même côté, sur une même perpendiculaire à D, deux points A et B. Construire un cercle passant par A et B et tangent à la droîte D.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Livbrairie Vuibert. Paris:1947

7.1.16

Outro problema resolvido usando inversão


Construir uma circunferência que passe por um ponto $\;A\;$ dado e corte duas circunferências - $\;c_1, \;c_2\;$ - dadas segundo os ângulos $\; \alpha , \; \beta \;$ respetivamente.

O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Se duas circunferências se cortam, dizemos que se cortam segundo um ângulo $\;\alpha \;$ quando as tangentes às duas num ponto de interseção fazem um ângulo de amplitude $\; \;\alpha .\;$ Neste caso, temos de encontrar uma circunferência que corte $\;c_1\;$ segundo um ângulo $\; \alpha\;$ (verde) e $\;c_2\;$ segundo o ângulo $\;\beta \;$ (castanho).
Para isso bastará inverter as circunferências dadas relativamente a uma circunferência de inversão e depois encontrar uma reta que corte as inversas segundo aqueles ângulos. Como a inversão conserva os ângulos se invertermos essa reta obteríamos uma circunferência a cortar as dadas segundo os ângulos dados. Esta circunferência inversa da reta deve passar pelo ponto $\;A\;$ dado e, para isso acontecer, bastará que a circunferência de inversão tenha centro em $\;A.\;$
Os procedimentos necessários já foram dissecados antes, por exemplo, na antepenúltima entrada publicada a 20 de dezembro do passado ano em que se apresentava a resolução do problemma " Construir uma circunferência que passe por dois pontos $\;A,\;B\;$ dados e corte uma reta dada segundo um dado ângulo $\; \alpha. \;$

© 5 janeiro 2016, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ no seletor na direita alta da figura, acompanha passo a passo a resolução do problema. Também pode fazer variar a amplitude do ângulo dado deslocando o ponto visível a verde, como pode fazer variar $\; A, \; O_1, \;O_2, ....\;$ com consequências que vão até poder ver em que condições há dua\ ou nenhuma solução para o problema.… Depois de qualquer alteração, pode usar o botão (direita altíssima) para reiniciar. <

Na figura ----$\;\fbox{n=0}\;$---- estão patentes os dados do problema.
Em ---- $\;\fbox{n=1}\;$---- acrescenta-se uma circunferência $\;i\;$ de centro $\;A\;$ (raio qualquer) que vai servir de circunferência de inversão.
$\;\fbox{n=2}\;$---- A inversão relativa à circunferência $\;i\;$ ou $\;(A)\;$ transforma a circunferência $\;c_1 \;\;\;\mbox{ou}\;\;\; (O_1) \;$ numa circunferência $\;c'_1\;$ de centro $\;O'_1$ e $\;(O_2)\;$ em $\;(O'_2)\;$ (tracejadas)
$\;\fbox{n=3}\;$---- Determinamos as circunferências (pontilhadas) concêntricas com $\;c'1 , \;c'_2\;$ para cada uma das quais qualquer das suas retas tangentes fazem ângulos
---$\; \alpha \;$ com $\;c'_1\;$, inversa de $\;c_1\;$
---$\; \beta \;$ com $\;c'_2\;$
$\;\fbox{n=4}.:\;$ Tomamos uma tangente (laranjada) comum a essas duas circunferências que obviamente cortará $\;(c'_1)\;$ segundo um ângulo $\; \alpha\;$ e $\;c'_2\;$ segundo um ângulo $\;\beta\;$
$\;\fbox{n=5} :\;$ ---- Por isso e porque a circunferência da inversão tem centro $\;A\;$, invertendo a reta alaranjada relativamente a $\;(i),\;$ obtemos uma circunferência que é solução do problema, ----$\;\fbox{n=6,7}\;$---- aqui realçada

Claro que no caso dos concretos dados originais e da nossa figura há mais três soluções, já que os nossos dois círcul(inh)os (a pontilhado) admitem quatro tangentes mostradas para $\;\fbox{n=8, 9, 10} \;$
Pode fazer variações claro....


* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
201. Construire un cercle passant par un point donné $\;A\;$ et coupant deux cercles donnés $\;(C),\;(C')\;$ sous des angles donnés $\;\alpha,\; \alpha '.$

2.1.16

O mundo do meio


Problema: Construir uma circunferência que passe por um ponto $\;A\;$ dado e corte duas circunferências - $\;c_1, \;c_2\;$ - dadas segundo os ângulos $\; \alpha , \; \beta \;$ respetivamente.

O ângulo de uma reta $\;r\;$ com uma circunferência que a corte num ponto $\;P\;$ é um ângulo de vértice $P$ cujos lados são $r$ e a tangente à circunferência em $\;P.\;$ Se duas circunferências se cortam, dizemos que se cortam segundo um ângulo $\;\alpha \;$ quando as tangentes às duas num ponto de interseção fazem um ângulo de amplitude $\; \;\alpha .\;$ Neste caso, temos de encontrar uma circunferência que corte $\;c_1\;$ segundo um ângulo $\; \alpha\;$ (verde) e $\;c_2\;$ segundo o ângulo $\;\beta \;$ (castanho).
Para isso bastará inverter as circunferências dadas relativamente a uma circunferência de inversão e depois encontrar uma reta que corte as inversas segundo aqueles ângulos. Como a inversão conserva os ângulos se invertermos essa reta obteríamos uma circunferência a cortar as dadas segundo os ângulos dados. Esta circunferência inversa da reta deve passar pelo ponto $\;A\;$ dado e, para isso acontecer, bastará que a circunferência de inversão tenha centro em $\;A.\;$
Os procedimentos necessários já foram dissecados antes, por exemplo, na antepenúltima entrada publicada a 20 de dezembro do passado ano em que se apresentava a resolução do problemma " Construir uma circunferência que passe por dois pontos $\;A,\;B\;$ dados e corte uma reta dada segundo um dado ângulo $\; \alpha. \;$

© 5 janeiro 2016, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ no seletor na direita alta da figura, acompanha passo a passo a resolução do problema. Também pode fazer variar a amplitude do ângulo dado deslocando o ponto visível a verde, como pode fazer variar $\; A, \; O_1, \;O_2, ....\;$ com consequências que vão até poder ver em que condições há duas ou nenhuma solução para o problema.… Depois de qualquer alteração, pode usar o botão (direita altíssima) para reiniciar.

Na figura - $\;\fbox{n=0}\;$ - estão patentes os dados do problema.
Em - $\;\fbox{n=1}\;$- acrescenta-se uma circunferência $\;i\;$ de centro $\;A\;$ (raio qualquer) que vai servir de circunferência de inversão.
$\;\fbox{n=2}\;$ - A inversão relativa à circunferência $\;i\;$ ou $\;(A)\;$ transforma a circunferência $\;c_1 \;\;\;\mbox{ou}\;\;\; (O_1) \;$ numa circunferência $\;c'_1\;$ de centro $\;O'_1$ e $\;(O_2)\;$ em $\;(O'_2)\;$ (tracejadas)
$\;\fbox{n=3}\;$ - Determinamos as circunferências (pontilhadas) concêntricas com $\;c'1 , \;c'_2\;$ para cada uma das quais qualquer das suas retas tangentes fazem ângulos
- $\; \alpha \;$ com $\;c'_1\;$, inversa de $\;c_1\;$
- $\; \beta \;$ com $\;c'_2\;$
$\;\fbox{n=4}.:\;$ Tomamos uma tangente (laranjada) comum a essas duas circunferências que obviamente cortará $\;(c'_1)\;$ segundo um ângulo $\; \alpha\;$ e $\;c'_2\;$ segundo um ângulo $\;\beta\;$
$\;\fbox{n=5} :\;$ - Por isso e porque a circunferência da inversão tem centro $\;A\;$, invertendo a reta alaranjada relativamente a $\;(i),\;$ obtemos uma circunferência que é solução do problema, - $\;\fbox{n=6,7}\;$ - aqui realçada

Claro que no caso dos concretos dados originais e da nossa figura há mais três soluções, já que os nossos dois círcul(inh)os (a pontilhado) admitem quatro tangentes mostradas para $\;\fbox{n=8, 9, 10} \;$
Pode fazer variações claro....


* Caronnet, Th. Éxércices de Géométrie Vuibert. Paris:1946.
201. Construire un cercle passant par un point donné $\;A\;$ et coupant deux cercles donnés $\;(C),\;(C')\;$ sous des angles donnés $\;\alpha,\; \alpha '.$