21.3.16

Construir um paralelogramo de que se conhecem as diagonais e um lado


Problema:
Construir um paralelogramo $\;[ABCD]\;$ de que conhecemos os comprimentos de um dos seus lados $\;a=AB\;$ e das suas diagonais $\; d_1=AC, \; d_2= BD.$

Um paralelogramo tem os lados opostos paralelos e de comprimentos iguais: $$\;AB\parallel CD \wedge AB=CD; \; BC\parallel DA \wedge BC=DA\;$$ e cada uma das suas diagonais encontra a outra no seu ponto médio, ou seja, há um ponto
$$\;M : \;\;\;\;AM = MC = \frac{d_1}{2},\;\;\; BM = MD = \frac{d_2}{2}\;$$

Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 21 março 2016, Criado com GeoGebra




Temos dados bastantes para construir um triângulo $\;[AMB]\;$ de lados $\;a=AB, \;\frac{d_1}{2}=AM, \; \frac{d_2}{2}=BM.\;\;\;\;\;$ E a partir dele, tudo se retira:
$\;\left(M,\;\frac{d_1}{2}, \right).AM \rightarrow C, \;\;\;\left(M,\;\frac{d_2}{2}\right).BM \rightarrow D\;$ □

200. Construire un parallèlogramme connaissant ses deux diagonales et un côté.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

17.3.16

Construir um trapézio conhecendo comprimentos das bases e amplitudes dos ângulos adjacentes a uma delas.


Problema:
Construir um trapézio $\;[ABCD]\;$ de que conhecemos os comprimentos das suas bases $\;a=AB, \;c=CD\;$ e os ângulos adjacentes a uma das suas bases $\;\beta=A\hat{B} C, \; \alpha= B\hat{A}D.$

De um trapézio $\;[ABCD]\;$ de bases $\;AB, \;CD\;$ e $\; \angle B\hat{A}D = \alpha\;$ qualquer reta que faça um ângulo igual a esse $\;\alpha\;$ com a reta $\;AB\;$ é paralela a $\;AD.\;$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 16 março 2016, Criado com GeoGebra



Para a determinação do vértice $\;C\;$ tomamos um ponto $\;E\;$ sobre $\;AB\;$ tal que seja $\;AE = CD. \;$
Tracemos o segundo lado de um ângulo de vértice em $\;E\;$ e primeiro lado $\;EB\;$. Sabemos que esse segunda lado é paralelo a $\;AD\;$ e, por isso, $\;C\;$ é um ponto desse segundo lado. Por outro lado, sabemos que está sobre o segundo lado do ângulo de vértice $\;B\;$ que faça um ângulo $\;\beta\;$ com o lado $\;BA\;$.
Tod o o problema de construção do trapézio em questão se resume pois a construir o triângulo de base $\;EB=a-c\;$ e ângulos adjacentes $\;\alpha, \; \beta\;$ cujo terceiro vértie é $\;C\;$
O quarto vértice $\;D\;$é a intersecção da paralela a $\;AB\;$ tirada por $\;C\;$ com a paralela a $\; EC\;$ tirada por $\;A.\; \;\;\;\;\;$ □

201. Construire un trapèze connaissant les deux bases et les angles adjacents à l'une de ces bases.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

10.3.16

Construir um trapézio de que conhecemos as bases e as diagonais


Problema:
Construir um trapézio de que se conhecem os comprimentos das bases AB (a=AB, c=CD) e das diagonais (e=AC, f=BD)




Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor na direita baixa da janela.


@geometrias, 10 março 2016, Criado com GeoGebra


Tomado um ponto $\;A\;$ qualquer e uma reta a passar por $\;A\;$ para suporte de uma base $\;AB,\;$ basta construir o triângulo com um vértice em $\;A\;$ de lados de comprimento $\;a+c\;$ (sobre a reta $\;AB\;$), $\; e, \; f.\;$
$\;C\;$ é um vértice deste triângulo:
Chamemos $\;E\;$ ao vértice desse triângulo sobre a reta $\;AB\;$ e na circunferência $\;(A, a+c).\;\; C\;$ está em $\;(A, e).(E, f).\;$
O ponto $\;D\;$ é intersecção das paralelas a $\;AB\;$ tirada por $\;C\;$ e a $\;EC\;$ tirada por $\;B.\;$ □

203. Construire un trapèze connaissant les bases et les diagonales..l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

2.3.16

Construir um quadrilátero convexo dados os lados e o ângulo de dois lados opostos


Problema:
São dados quatro segmentos $\;a, \;b,\;c,\;d\;$ e um ângulo $\;\alpha .\;$
Construir um quadrilátero convexo $\;ABCD\;$ tal que $\;AB=a,\;BC=b, \; CD=c, \; DA=d\;$ e $\; \angle \widehat{(AB, CD)} =\alpha.$

Este é um dos problemas para o qual os passos da construção se encontram por análise da figura do problema já resolvido. Se conhecemos o ângulo $\; \angle \widehat{(AB, CD)} =\alpha,$ ao tomarmos um ângulo de vértice num dos pontos $\;A\;$ (ou $\;D\;$) sendo um dos lados do ângulo a reta $\;AB,\;$ (ou $\;DC\;$) o outro lado será uma reta paralela a $\;DC\;$ (ou $\;AB\;$)
Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor centrado ao fundo da janela.

©geometrias. 1 março 2016, criado com GeoGebra


Tomamos um ponto $\;D\;$ qualquer e duas concorrrentes em $\;D\;$ fazendo um ângulo de amplitude $\; \alpha .\;$ Sobre uma dessas retas, tomamos $\;C\;$ na intersecção dela com a circunferência $\;(D, \;c).\;$ Na outra reta podemos tomar $\;F\;$ na sua intersecção com a circunferência $\;(D, a).\;$ Por ser $\; \angle \widehat{(DC, AB)} = \alpha = C\hat{D} F,\; \; \; AB \parallel DF.\;$
$\;B\;$ fica determinado como intersecção das circunferências $\;(F, \;d)\;$ e $\;(C, b)\;$
E $\;A\;$ fica determinado sobre a paralela a $\;DF\;$ tirada por $\;B\;$ à distância $\,a\;$ de $\,B.\;\;\;\;\; \;$ □

204. Construire un quadrilatère convexe connaissant les quatre côtés et l'angle formé par deux côtés non consécutifs..l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947