28.3.14

Usando lugares geométricos para resolver problemas de construção (15)

Problema: De um quadrilátero $\;ABCD\;$, inscritível numa circunferência, conhecemos um vértice $\;A$, a amplitude do ângulo $\;\angle Â\;$ e os comprimentos de um dos lados adjacentes ao ângulo $\;AB\;$ e das diagonais $\;AC, \;BD$.    Determinar os restantes vértices $\;B, \;C, \;D\;$ desse quadrilátero.

A construção abaixo ilustra a resolução do problema proposto
  1. Dados (a azul): um ângulo $\;\alpha\;$ de amplitude igual à do ângulo $\; \angle BÂD\;$ um segmento $\;A_0B_0\;$ de comprimento igual ao lado $\;AB\;$; um segmento $\;A_0C_0\;$ de comprimento igual à diagonal $\;AC\;$; um segmento $\;B_0D_0\;$ de comprimento igual à diagonal $\;BD\;$
  2. O vértice $\;B\;$ é um dos pontos que está à distância $\;A_0B_0\;$ do vértice $\;A\;$ (1º lugar geométrico da lista). Tomemos um ponto sobre a circunferência $\;(A, \;A_0B_0)\;$ e designemo-lo por $\;B\;$.

    © geometrias, 28 de Março de 2014, Criado com GeoGebra


  3. Os pontos $\;B, \;A\;$ definem a reta $\;AB\;$ e podemos construir o ângulo de vértice $\;A\;$ e lados $\;AB, \;AD\;$
    O ponto $\;D\;$ está no segundo lado do ângulo $\;\angle \alpha\;$ e à distância $\;B_0D_0\;$ de $\;B\;$, ou seja, na interseção da circunferência $\;(B, \;B_0D_0)\;$ com o segundo lado do ângulo $\;\angle BÂD\;$
  4. Há um só ponto equidistante dos pontos $\;A, \;B, \;D\;$ (interseção das mediatrizes dos segmentos $\;AB\;$ e $\;BD\;$ - 3º lugar geométrico da lista) e por isso há uma única circunferência a passar por $\;A, \;B, \;D\;$ - 1º lugar geométrico da lista dos pontos equidistantes a um dado ponto.
    Assim, sendo inscritível o quadrilátero terá os seus quatro vértices sobre a circunferência determinada por $\;A, \;B, \;D\;$, a castanho na figura.
    $\;C\;$ está à distância $\;A_0C_0\;$ de $\;A\;$, ou seja na circunferência $\;(A, \;A_0C_0)\;$ (1º lugar geométrico da lista)
    No caso da nossa figura, $\;C\;$ é um dos dois pontos de interseção das circunferências $\;(A, \;B, \;D)\;$ e $\;(A, \;A_0C_0)\;$

Podemos variar a amplitude $\;\alpha\;$ e os comprimentos $\;A_0B_0\;$ $\;A_0C_0\;$ e $\;B_0D_0\;$

27.3.14

Usando lugares geométricos para resolver problemas de construção(14)

Problema: Determinar uma tangente a uma dada circunferência cortada por uma reta dada a uma dada distância do ponto de tangência.

Na construção a seguir, apresentamos os passos da resolução do problema de construção.

Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.

  1. Dados (a azul): uma reta $\;a\;$, um segmento $\;d\;$, uma circunferência de centro $\;O\;$ e raio $\;r\;$

    Resolver este problema resume-se a determinar um ponto $\;P\;$ da reta $\;a\;$ de que se tire uma tangente $\;t\;$ a $\;(O, r)\;$ sendo $\;PT = d\;$, em que T é o seu ponto de tangência.
  2. Um ponto $\;P\;$ de $\;a\;$ que satisfaz as condições requeridas é vértice de um triângulo $\;PTO\;$ retângulo em $\;T\;$ em que os catetos são $\;PT=d\;$ e $\;TO = r\;$ conhecidos e a hipotenusa é $\;OP\;$
    Para determinar $\;OP =h\;$ basta tomar o triângulo retângulo de catetos $\;r, \; d\;$.

    © geometrias, 27 de Março de 2014, Criado com GeoGebra


  3. E o ponto $\;P\;$, se existir fica determinado pela interseção de $\;a\;$ com a circunferência $\;(O, h)\;$, No caso da nossa figura ficam determinados dois pontos $\;P.\;Q\;$ : $\;PO = QO = h$, sendo $\;h^2=r^2+d^2\;$
  4. Os pontos $\;T\;$ de tangência encontarm-se na interseção de $\;(O, r)\;$ com a circunferência de diâmetro $\;OP=h\;$ (caso particular do 5º ou do 9º lugar geométrico da lista). Na nossa figura, para o ponto $\;P\;$ há duas tangentes $\;t_1\;$ e $\;t_2\;$, para as quais $\;PT_1 = PT_2 = d\;$, como queríamos.
  5. Outras soluções, no nosso caso, são as tangentes a $\;(O, \;r)\;$ tiradas por $\;Q\;$

Podemos variar os comprimentos $\;d\;$ $\;r\;$ e as posições relativas das circunferência e reta dados. Verificamos que a existência de soluções depende da relação entre o comprimento de $\;d\;$ e as posições relativas de $\;a\;$ e $ \;(O,r)\;$