7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16

17.1.20

Circuncentros O, OA,OB e OC de um triângulo ABC e seus flancos

circuncentros.cdy Numa entrada Os flancos de um triângulo... de 18/10/2019
  1. a partir de um triângulo [ABC] de lados a=BC, b=CA e c=AB,
  2. construiram-se quadrados - a2, b2 e c2 - sobre os seus lados, a saber: a -> [BAbAcC], b -> [CBcBaA] e c -> [ACaCbB] e finalmente
  3. os triângulos [ABaCb], [BCbAb], [CAcBc] a que chamamos flancos de [ABC]
Então, usando rotações, Lamoen provava que os três triângulos flancos de [ABC] eram equivalentes entre si (têm a mesma área)
Nesta entrada, consideramos o triângulo [OAOBOC] cujos vértices são os circuncentros dos triângulos flancos de [ABC].
  • Como o circuncentro O de [ABC] é a intersecção das mediatrizes dos lados a=BC, b=CA e c=BA, o triângulo [OAOBOC] é homotético a [ABC] sendo BC paralela a OBOC, CA paralela a OCOA e AB paralela a OAOB e as mediatrizes cortam a meio dos lados dos quadrados correspondentes: a2 -> [BAbAcC], b2 -> [CBcBaA] e c2 -> [ACaCbB]. Assim, as distâncias de cada um dos lados a, b, c de [ABC] a cada um dos correspondentes lados de [OAOBOC] é a/2 , b/2 e c/2.

Floor van Lamoen, Friendship Among Triangle Centers. Forum Geometricorum (Volume 1 (2001) 1-6), Editor: Paul Yiu.