Mostrar mensagens com a etiqueta quadrado. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta quadrado. Mostrar todas as mensagens

20.3.18

Um quadrado, um ponto variável sobre um lado, um ângulo e sua invariância



António Aurélio Fernandes passou por um problema no YouTube que por lá foi resolvido usando vetores e apresentou-o a si mesmo aqui a pensar numa demonstração mais elementar.

Enunciado:
No quadrado $\;[ABCD]\;$ toma-se um ponto $\;P\;$ qualquer sobre $\;BC.\;$ Por $\;A\;$ traça-se a semi reta $\;AP\;$ e, em seguida, por $\;C\;$ tira-se uma perpendicular a $\;AP\;$ que encontra a reta $\;AB\;$ em $\;Q.\;$
Provar que o ângulo em $\; \angle A\hat{Q}P\;$ se mantém constante quando $\;P\;$ toma diferentes posições em $\;[BC].\;$



Seguir os passos da construção e demonstração
$\;\fbox{n=1}:\;$ Apresenta-se o quadrado $\;[ABCD]\;$ e um ponto $\;P\;$ de $\;[BC].\;$

$\;\fbox{n=2}:\;$ Apresenta-se $\;\dot{A}P\;$ (diferente para cada $\;P\;$ de $\;[BC]\;$ e a perpendicular a $\;AP\;$ tirada por $\;C\;$ que interseta $\;\dot{A}B\;$ em $\;Q\;$

14 março 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Finalmente acrescentamos $\;[PQ]\;$ e o ângulo $\;B\hat{Q}P\;$ rotulado pelo seu valor (amplitude) em graus. Pode deslocar $\;P\;$ sobre $\;BC\;$ para verificar que o seu valor se mantém invariável e que quando $\;P = C, \;\; [AP] = [AC]\;$ é uma das diagonais do quadrado e, para esta posição de $\;P,\;$ a perpendicular a $\;AP\;$ tirada por $\;C\;$ é perpendicular a $\;AC\;$ em $\;C=P\;$ e, por isso, paralela a $\;BD,\;$ já que as diagonais de um quadrado são perpendiculares.
Para esta posição de $\;P=C\;$ é bem óbvio que $\;AQP=AQC\;$ é um triângulo retângulo em $\;P=C\;$e isósceles, já que $\;CQ \perp AC \wedge AC=CQ =BD\;$ e $\;\angle C\hat{A}Q = \angle A\hat{Q}C \;$

$\;\fbox{n=4}:\;$ Acrescentamos as diagonais $\;CA, \;BD\;$

$\;\fbox{n=5}:\;$ A situação descrita acima para o caso de $\;P\;$ assumir a posição de $\;C\;$ é aplicável a qualquer $\;P\;$ de $\;BC,\;$ observando o quadrado de lado $\;BP\;$, $\;[BPEF], \; $ já que a sua diagonal $\;BE\;$ é um segmento da diagonal $\;BD\;$ de $\;[ABCD]\;$ e $\;PF \parallel CA\;$.

16.6.16

quatro pontos, um em cada lado de qual quadrado?


Hoje vamos tratar de um outro tipo de problema de construção de quadrados, que nos tem aparecido repetidamente, a saber:
a construção de um quadrado do qual cada uma das retas dos seus lados passa por um só de quatro pontos $\;A, \;B, \;C, \;D\;$ dados..
Para resolver este problema, é necessário olhar para as propriedades do quadrado. Tomem-se
  • quatro retas
    • $\;p, \;q, \;r,\; s, \;$ sendo
      • $\;p \perp q, \;q\perp r, \;r\perp s, \;s\perp p,\;$
      • $p \parallel r, \; q \parallel s\;$
      • e igualmente distanciadas $\;p\;$ de $\;r\;$ e $\,q\;$ de $\;s\;$
    • e os quatro pontos
      • $P,\; Q,\;R, \;S, \,$
        • respetivamente $\;p.q, \;q.r, \; r.s,\;s.t,\;$
        • sendo, obviamente iguais os segmentos $\;PQ, \;QR, \;RS, \; SP.\;$ das retas $\;p, \;q, \;r,\; s, \;$ respetivamente.
    Sabemos que
    • se uma reta corta duas retas fazendo ângulos alternos internos iguais, cf (I.27), então estas retas são paralelas;
    • qualquer segmento com extremidades em duas retas paralelas, cf (I.29), fazem com elas ângulos alternos internos iguais;
    • segmentos de reta unindo extremidades de segmentos iguais e paralelos, cf (I.33), são iguais e paralelos;
    • E, em consequência, se cortarmos dois pares de retas paralelas igualmente distanciadas, por dois segmentos a fazer ângulos alternos internos iguais (cada um a cada um), esses segmentos são iguais.
    No caso do nosso problema não nos são dados mais que um ponto $\;A\;$ em $\;p, \;$ $\;B\;$ em $\;q, \;$ $\;C\;$ em $\;r\;$ e $\;D\;$ em $\;s.\;$
    Se tomarmos $\;AC\;$ a ligar pontos das paralelas $\;p\;$ e $\;r\;$ e o ponto $\;B\;$ de $\;q,\;$ qual deve ser a relação de um reta tirada por $\;B\;$ com $\;q, \;s,\; AC\;$ para intersectar $\;s\;$ de modo a ter os mesmos ângulos alternos internos ao cortar $\;q, \; s\;$ em ângulos iguais aos feitos por $\;AC\;$ ao cortar $\;p, \;r$?
    Bastará tirar por $\;B\;$ a perpendicular a $\;AC\;$ porque, designando por $\;I\;$ a intersecção das perpendiculares, $\; A\hat{P}B= B\hat{I}A = 1 reto, \;$ e, em consequência, $\;P\hat{B}I + A\hat{I}B = 2 retos,\;$ bem como $\;Q\hat{A}I + A\hat{I}B = 2 retos,\;$ ou seja, $\;Q\hat{A}I = P\hat{B}I.\;$
    De modo inteiramente análogo, se provaria que cada um dos ângulos feitos entre $\;AC, \;r\;$ era igual a um dos ângulos feitos pela perpendicular a $\;AC\;$ tirada por $\;B\,$ com $\;s\;$.

    Se $\;BD\;$ não for perpendicular a $\;AC,\;$, na perpendicular a $\;AC\;$ tirada por $\;B\;$ encontramos um segundo ponto $\;E\;$ de $\;s\;$ de que nos tinha sido dado $\;D.\;$ Este ponto $\;E\;$ é tal que $\;BE\perp AC\;$ e $\;BE =AC, \;$ por estes serem segmentos com extremidades em pares de retas igualmente distanciadas e paralelas, por fazerem com elas iguais ângulos alternos internos: $\;s=DE\;$
    Isto chega para resolver o nosso problema de construção.

    $\fbox{n=0}\;\;\;$ Não conhecemos mais que os pontos $\;A, \;B, \;C, \;D\;$ dados.


    © geometrias.16 junho 2016, Criado com GeoGebra


    Peguemos na régua e no compasso.
    $\fbox{n=1}$ Tira-se por $\;B\;$ a perpendicular a $\;AC \;$ que, intersectada pela circunferência de centro $\;B\;$ e raio $\;AC\;$ determina um ponto $\;E\;$ da reta $\;s\;$ que contém o lado oposto ao lado $\;q\;$ que passa por $\;B.\;\;\;\; DE=s$
    $\fbox{n=2}$ Determinada a reta $\;s\;$ pode tirar por $\;A\;$ a perpendicular $\;p\;$ a ela e tomar a intersecção $\;p.s : \;\;\;S, \;$ vértice do quadrado.
    Do mesmo modo, a perpendicular a $\;s\;$ tirada por $\;C\;$ que designamos por $\;r\;$, sendo o vértice $\;R\;$ determinado por $\;r.s\;$
    $\fbox{n=3}$ Finalmente a perpendicular a $\;p\;$ (ou a $\;r\;$) tirada por $\;B\;$ que designamos por $\;q\;$ e que é a reta que faltava para a determinação por $\;p.q\;$ de $\;P\;$ e por $\;q.r\;$ de $\;Q.$
    $\fbox{n=4}$ Apresenta-se o quadrado $\;PQRS\;$ em que $\;A\in p, \; B\in q, \; C \in r, \; D \in s\;$

    Este problema tem muitas soluções, claro.

    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martin. Geometric Constructions Springer. New York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

8.9.14

Construção das circunferências do anjo com um pão


Problema: Dados um quadrado $\;[ABCD]\;$ de lado $\;a\;$, arcos $\;(A, BD), \;(B, AC)\;$ e o semicírculo de diâmetro $\;CD\;$, determinar os centros e raios de dois círculos, um tangente aos três arcos e outro tangente a $\;CD\;$ e aos dois arcos $\;(A, BD), \;(B, AC)\;$
Para determinar os dois círculos, bastará determinar os raios dos círculos. Os seus centros estarão forçosamente no eixo de simetria da figura, isto é sobre a reta que liga os pontos médios $\;E\;$ de $\;CD\;$ e $\;F\;$ de $\;AB.\;$
Chamemos $\;O_1\;$ e $\;r_1\;$ aos centro e raio da maior circunferência (o pão?) e $\;O_2\;$ e $\;r_2\;$ aos centro e raio da circunferência menor (a cabeça do anjo?)
Clicando o botão no centro ao fundo verá os segmentos de reta auxiliares.
Toma-se o segmento de reta $\;EF\;$ que conterá $\;O_1, \;O_2\;$ e analisa-se o problema supondo que já está resolvido.

© geometrias, 7 de Setembro de 2014, Criado com GeoGebra


  1. $\;(O_1, r_1)?\;$ Esta circunferência é tangente internamente às circunferências
    • $\;(E, \; \displaystyle \frac{a}{2})\;$ e, por isso,
      • passa por $\;G,\;$ sua interseção com $\;EF\;$
      • $\;FO_1\; = FG+GO_1 = \displaystyle \frac{a}{2} + r_1$
    • $\;(A,\; a)\;$ e, por isso, $\;AO_1 = a-r_1, \;$, pois a distância entre centros de duas circunferências tangentes interiormente é igual ao valor absoluto da diferença dos seus raios
    • $\;(B,\; a)\;$ e, por isso, $\;BO_1 = a-r_1:\;$ ($\;AO_1=BO-1 =a-r_1\;)$
    Considerando o triângulo $\;[AFO_1],\;$ retângulo em $\;F\;$, cujos catetos são $\;AF = \displaystyle \frac{a}{2}\;$ e $\;FO_1= \displaystyle \frac{a}{2} + r_1, \;$ e cuja hipotenusa é $\;AO_1=a-r_1\;$, o teorema de Pitágoras estabelece $$\left( \frac{a}{2}\right)^2 + \left(\frac{a}{2} + r_1\right)^2 = \left(a-r_1\right)^2$$ que dá o valor de $\;r_1\,$ em função do lado $\;a\;$ do quadrado: $$r_1 = \frac{a}{6}$$
  2. $\;(O_2, r_2)?\;$ Esta circunferência é tangente a $\;CD\;$ no ponto $\;E\;$ e exteriormente às circunferências $\;(A, \; a)\;$ e $\;(B, \; a)\;$. As circunferências tangentes exteriormente têm centros distanciados um do outro $\;AO_2 =a+r_2.\;$.
    O Teorema de Pitágoras aplicado ao triângulo $\;[AFO_2]\;$, retângulo em $\;F\;$ cujos catetos são $\;AFO_2 = \displaystyle \frac{a}{2}\;$ e $\;FO_2=a-r_2\;$ e cuja hipotenusa é $\;AO_2 = a+r_2\;$ garante que $$\left(\frac{a}{2}\right)^2 + \left(a-r_2\right)^2 = \left( a+r_2\right)^2$$ que dá para $\;r_2\;$ um valor em função do lado $\;a\;$ do quadrado $$r_2 = \frac{a}{16}$$

Assim, a construção das circunferências fica feita se tomarmos o segmento $\;EF\;$ de comprimento $\;a\;$ e sobre ele tomarmos
  • $\;O_1\;$ tal que $\;GO_1 =\displaystyle \frac{a}{6} =r_1\;$ - $\;(O_1, r_1)\;$ passa pelo ponto de interseção da semicircunferência de diâmetro $\;CD\;$ da figura
  • $\;O_2\;$ tal que $\;EO_2 = \displaystyle\frac{a}{16} =r_2\;$ - $\;(O_2, r_2)\;$ passa por $\;E\;$

sugerido em vários apontamentos feitos sobre "sangakus", asssim apresentadas em pt.wikipedia: tábuas comemorativas, em madeira, oferecidas a pequenos santuários japoneses, como forma de agradecer aos deuses, provavelmente, a resolução de um problema matemático...

4.8.07

O quadrado e a raíz quadrada

Num triângulo rectângulo, a altura relativa à hipotenusa é meio proporcional entre as partes em que a hipotenusa fica dividida. Este é um resultado que se trabalha no 8º ano. E se uma das partes da hipotenusa é a unidade, a outra parte é o quadrado da altura. Ou a altura é a raíz quadrada da outra parte da hipotenusa. Se a altura h divide a hipotenusa em duas partes m e n, h2=mn. A partir de certa altura, fixamos a nossa atenção na média geométrica e só utilizamos este resultado para calcular o comprimento h à custa das partes da hipotenusa e raramente o utilizamos para determinar quadrados. Trabalhar com médias (aritmética, geométrica e harmónica) é um bom exercício de construção e permite consolidar noções relativas e invariantes. A construção que apresentamos em seguida (em que tudo pode variar, deslocando os elementos A,U,.) é um exemplo muito formativo que pode ser abordado de novo no 9º ano. Os estudantes podem aprofundar os seus conhecimentos e compreensão sobre o conceito de medida, mudando de unidade, etc. E não será natural garantir que os estudantes reconheçam que um determinado método de construção serve para obter dois resultados recíprocos?

[A.A.F.]

Como determinar o segmento que tem por comprimento a raíz quadrada do comprimento de um segmento dado? Como determinar o segmento que tem por comprimento o quadrado do comprimento de um segmento dado? Dois problemas?